The Impact of Biochar Treatment on H2S and NH3 Emissions During Manure Agitation prior to Pump-Out

Thumbnail Image
Date
2020-01-01
Authors
Koziel, Jacek
Lee, Myeongseong
Ma, Hantian
Meiirkhanuly, Zhanibek
Li, Peiyang
Brown, Robert
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Authors
Research Projects
Organizational Units
Journal Issue
Is Version Of
Versions
Series
Department
Food Science and Human NutritionMechanical EngineeringCivil, Construction and Environmental EngineeringAgricultural and Biosystems EngineeringToxicologyMechanical EngineeringBioeconomy Institute (BEI)
Abstract

Hydrogen sulfide and ammonia are always a concern in the livestock industries, especially when farmers try to clear their manure storage pits. Agitation of manure can cause dangerously high concentrations of harmful agents such as H2S and NH3 to be emitted into the air. Biochar can absorb these gases. We hypothesized that applying biochar on top of manure can create an effective barrier to protect farmers and animals from exposure to NH3 and H2S. In this study, one kind of biochar was tested, highly alkaline, and porous (HAP, pH 9.2) biochar made from corn stover. Two scenarios of (6 mm) 0.25” and (12 mm) 0.5” thick layers of biochar treatments were topically applied to the manure and tested on a pilot-scale setup, simulating a deep pit storage. Each setup experienced 3-min of agitation using a transfer pump, and measurements of the concentrations of NH3 and H2S were taken in real-time and measured until the concentration stabilized after the sharp increase in concentration due to agitation. The results were compared with the control in the following 3 situations: 1. The maximum (peak) flux 2. Total emission from the start of agitation until the concentration stabilized, and 3. The total emission during the 3 min of agitation. For NH3, 0.5” HAP biochar treatment significantly (p<0.05) reduced maximum flux by 63.3%, overall total emission by 70%, and total emissions during the 3-min agitation by 85.2%; 0.25” HAP biochar treatment significantly (p<0.05) reduced maximum flux by 75.7%, overall, total emission by 74.5%, and total emissions during the 3-min agitation by 77.8%. For H2S, 0.5” HAP biochar treatment reduced the max by 42.5% (p=0.125), overall total emission by 17.9% (p=0.290), and significantly reduced the total emission during 3-min agitation by 70.4%; 0.25” HAP treatment reduced max by 60.6% (p=0.058), and significantly reduced overall and 3-min agitation‘s total emission by 64.4% and 66.6%, respectively.

Comments

This proceeding is published as Chen, Baitong, Jacek A. Koziel, Myeongseong Lee, Hantian Ma, Zhanibek Meiirkhanuly, Peiyang Li, Andrzej Bialowiec, and Robert C. Brown. "The Impact of Biochar Treatment on H2S and NH3 Emissions During Manure Agitation prior to Pump-Out." Meeting Paper no. 2000873. 2020 ASABE Annual International Virtual Meeting. July 13-15, 2020. DOI: 10.13031/aim.202000873. Posted with permission.

Description
Keywords
Citation
DOI
Copyright
Wed Jan 01 00:00:00 UTC 2020