Pervious Concrete Physical Characteristics and Effectiveness in Stormwater Pollution Reduction

Thumbnail Image
Date
2016-04-01
Authors
Ling, Yifeng
Shi, Guyu
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Authors
Person
Ong, Say
Professor
Person
Wang, Kejin
Professor
Research Projects
Organizational Units
Organizational Unit
Institute for Transportation
InTrans administers 14 centers and programs, and several other distinct research specialties, and a variety of technology transfer and professional education initiatives. More than 100 Iowa State University faculty and staff work at InTrans, and from 200 to 250 student assistants from several ISU departments conduct research while working closely with university faculty. InTrans began in 1983 as a technical assistance program for Iowa’s rural transportation agencies.
Journal Issue
Is Version Of
Versions
Series
Abstract

The objective of this research was to investigate the physical/chemical and water flow characteristics of various previous concrete mixes made of different concrete materials and their effectiveness in attenuating water pollution. Four pervious concrete mixes were prepared with Portland cement and with 15% cementitious materials (slag, limestone powder, and fly ash) as a Portland cement replacement. All four pervious concrete mixtures had acceptable workability. The unit weight of the fresh pervious concrete mixtures ranged from 115.9 lb/yd3 to 119.6 lb/yd3 , while the 28 day compressive strength of the pervious concrete mixes ranged from 1858 psi (mix with 15% slag) to 2285 psi (pure cement mix). The compressive strength generally increased with unit weight and decreased with total porosity (air void ratio). The permeability of the four mixes generally decreased with unit weight and increased with total porosity. The permeability coefficients ranged from 340 in./hr for the pure cement mix to 642 in./hr for the mix with 15% slag. The total porosities of the four pervious concrete mixes ranged from 24.00% (mix with 15% slag) to 31.41% (pure cement mix) as measured by the flatbed scanner test method, while the porosities ranged from 18.93% (mix with 15% slag) to 24.15% (pure cement mix) as measured by the RapidAir method. The total porosities of the four pervious concrete mixes measured by the flatbed scanner method were higher than those measured by the Rapid Air method, but the specific surface areas measured by the flatbed scanner method were all lower than those measured by the Rapid Air method. For the pollution abatement experiments, mixes with fly ash and limestone powder removed about 30% of the input naphthalene concentration, while the mix with slag only removed 0.5% of the influent naphthalene concentration. The water volume balance showed that less than 1% of the water added was retained in the experimental column setup.

Comments

For this and other reports please see the project pages at the Midwest Transportation Center http://intrans.iastate.edu/mtc/index.cfm/research/project/project/-688823950

Description
Keywords
Citation
DOI
Source
Subject Categories
Copyright
Collections