Comparison of three similarity scores for bullet LEA matching

Vanderplas, Susan
Nally, Melissa
Klep, Tylor
Cadevall, Cristina
Hofmann, Heike
Journal Title
Journal ISSN
Volume Title
Source URI
Research Projects
Organizational Units
Journal Issue

Recent advances in microscopy have made it possible to collect 3D topographic data, enabling more precise virtual comparisons based on the collected 3D data as a supplement to traditional comparison microscopy and 2D photography. Automatic comparison algorithms have been introduced for various scenarios, such as matching cartridge cases[1],[2] or matching bullet striae[3],[4],[5]. One key aspect of validating these automatic comparison algorithms is to evaluate the performance of the algorithm on external tests, that is, using data which were not used to train the algorithm. Here, we present a discussion of the performance of the matching algorithm[6] in three studies conducted using different Ruger weapons. We consider the performance of three scoring measures: random forest score, cross correlation, and consecutive matching striae (CMS) at the land-to-land level and, using Sequential Average Maxima scores, also at the bullet-to bullet level. Cross correlation and random forest scores both result in perfect discrimination of same-source and different-source bullets. At the land-to-land level, discrimination for both cross correlation and random forest scores (based on area under the curve, AUC) is excellent (≥0.90).

<p>This article is published as Vanderplas, Susan, Melissa Nally, Tylor Klep, Cristina Cadevall, and Heike Hofmann. "Comparison of three similarity scores for bullet LEA matching." <em>Forensic Science International</em> (2020): 110167. Posted with permission of CSAFE.</p>
forensic science, toolmark, cross correlation, random forest, 3D microscopy, Land engraved areas (LEAs)