Functionalizing magnet additive manufacturing with in-situ magnetic field source

Thumbnail Image
Date
2020-08-01
Authors
Sarkar, Abhishek
Somashekara, M. A.
Paranthaman, M. Parans
Kramer, Matthew
Haase, Christopher
Nlebedim, Ikenna
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract

Additive manufacturing via 3-D printing technologies have become a frontier in materials research, including its application in the development and recycling of permanent magnets. This work addresses the opportunity to integrate magnetic field sources into 3-D printing process in order to enable printing, alignment of anisotropic permanent magnets or magnetizing of magnetic filler materials, without requiring further processing. A non-axisymmetric electromagnet-type field source architecture was designed, modelled, constructed, installed to a fused filament commercial 3-D printer, and tested. The testing was performed by applying magnetic field while printing composite anisotropic Nd-Fe-B + Sm-Fe-N powders bonded in Nylon12 (65 vol.%) and recycled Sm-Co powder bonded in PLA (15 vol.%). Magnetic characterization indicated that the degree-of-alignment of the magnet powders increased both with alignment field strength (controlled by the electric current applied to the magnetizing system) and the printing temperature. Both coercivity and remanence were found to be strongly dependent on the degree-of-alignment, except for printing performed below but near the Curie temperature of Nd-Fe-B (310 degrees C). At applied field of 0.15 kOe, Sm-Co and hybrid Nd-Fe-B/Sm-Fe-N printed samples showed degrees-of-alignment of 83 % and 65 %, respectively. The variations in coercivity were consistent with previous observations in bonded magnet materials. This work verifies that integration of magnetic field sources into 3-D printing processes will result in magnetic alignment of particles while ensuring that other advantages of 3-D printing are retained.

Series Number
Journal Issue
Is Version Of
Versions
Series
IS-J 10203
Academic or Administrative Unit
Ames Laboratory
Type
article
Comments
Rights Statement
Copyright
Funding
Subject Categories
DOI
Supplemental Resources
Collections