Environmental Impacts of Emergency Livestock Mortality Composting—Leachate Release and Soil Contamination

dc.contributor.author Glanville, Thomas
dc.contributor.author Ahn, Heekwon
dc.contributor.author Richard, Thomas
dc.contributor.author Harmon, Jay
dc.contributor.author Reynolds, Donald
dc.contributor.author Akinc, Sevinc
dc.contributor.department Agricultural and Biosystems Engineering
dc.date 2018-02-13T04:03:20.000
dc.date.accessioned 2020-06-29T22:31:31Z
dc.date.available 2020-06-29T22:31:31Z
dc.date.copyright Sun Jan 01 00:00:00 UTC 2006
dc.date.embargo 2012-12-12
dc.date.issued 2006-07-01
dc.description.abstract <p>A 3-year study was conducted in Iowa to evaluate the feasibility of using composting for emergency disposal of cattle mortalities. During the study, 49 metric tons of 450 kg cattle carcasses were composted in 27 replicated unturned windrow test units constructed during three different seasons of the year. Each test unit contained 1.8 metric tons of carcasses enveloped in one of 5 different materials: corn silage, ground cornstalks, straw/manure, leaves, or a soil/compost blend. Due to their water absorbing capacity and ability to evaporate absorbed water, the volume of leachate released into the soil was generally less than 5% of the 500-600 mm of precipitation that fell on the test units. Chemical analysis of 1.2 m deep soil cores collected from beneath the composting test units prior to and following composting showed statistically significant increases in chloride concentrations at all depths beneath composting test units constructed from silage, cornstalks, straw, and the soil/compost blend. Statistically significant increases in % total carbon (silage test units only) and % total nitrogen (silage, cornstalk, straw/manure test units) were limited to the top 15 cm of soil. Increases in these pollutants were moderate, amounting to less than 5X, 0.2X and 0.4 X respectively of chloride, % total carbon, % total N concentrations prior to composting. Statistically significant increases in total ammonia-nitrogen were noted at depths of up to 90 cm beneath test units constructed with silage or leaves, and at 30 cm and 15 cm depths respectively beneath test units constructed with straw/manure and cornstalks. The ammonia-nitrogen increases were large, ranging from 40-160 X of pre-composting levels of ammonia in the topsoil. When compared with the groundwater pollution potential of carcass burial, however, the estimated total mass of N contained in the composted cattle carcasses was 4-10 X the increases in total N measured in the soil beneath the composting test units.</p>
dc.description.comments <p>This is an ASAE Meeting Presentation, Paper No. <a href="http://elibrary.asabe.org/abstract.asp?aid=20919&t=3&dabs=Y&redir=&redirType=" target="_blank">064049</a>.</p>
dc.identifier archive/lib.dr.iastate.edu/abe_eng_conf/113/
dc.identifier.articleid 1109
dc.identifier.contextkey 3531408
dc.identifier.s3bucket isulib-bepress-aws-west
dc.identifier.submissionpath abe_eng_conf/113
dc.identifier.uri https://dr.lib.iastate.edu/handle/20.500.12876/110
dc.language.iso en
dc.source.bitstream archive/lib.dr.iastate.edu/abe_eng_conf/113/Harmon_2006_EnvironmentalImpactsEmergency.pdf|||Fri Jan 14 18:46:44 UTC 2022
dc.subject.disciplines Bioresource and Agricultural Engineering
dc.subject.disciplines Veterinary Medicine
dc.subject.keywords animal carcass
dc.subject.keywords mortality
dc.subject.keywords disposal
dc.subject.keywords composting
dc.subject.keywords environment
dc.title Environmental Impacts of Emergency Livestock Mortality Composting—Leachate Release and Soil Contamination
dc.type article
dc.type.genre conference
dspace.entity.type Publication
relation.isAuthorOfPublication a5f12b36-10ea-4059-ac84-5008540124b9
relation.isAuthorOfPublication 863ffed7-5274-46d6-95cc-47c7d0d5b6ab
relation.isOrgUnitOfPublication 8eb24241-0d92-4baf-ae75-08f716d30801
Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
3.07 MB
Adobe Portable Document Format