Performance investigation of a high-field active magnetic regenerator

dc.contributor.author Teyber, Reed
dc.contributor.author Holladay, Jamelyn
dc.contributor.author Meinhardt, Kerry
dc.contributor.author Polikarpov, Evgueni
dc.contributor.author Thomsen, Edwin
dc.contributor.author Cui, Jun
dc.contributor.author Rowe, Andrew
dc.contributor.author Barclay, John
dc.contributor.department Ames Laboratory
dc.contributor.department Materials Science and Engineering
dc.date 2019-09-23T01:50:25.000
dc.date.accessioned 2020-06-29T23:23:00Z
dc.date.available 2020-06-29T23:23:00Z
dc.date.embargo 2019-12-08
dc.date.issued 2018-12-08
dc.description.abstract <p>Regenerative magnetic cycles are of interest for small-scale, high-efficiency cryogen liquefiers; however, commercially relevant performance has yet to be demonstrated. To develop improved engineering prototypes, an efficient modeling tool is required to screen the multi-parameter design space. In this work, we describe an active magnetic regenerative refrigerator prototype using a high-field superconducting magnet that produces a 100 K temperature span. Using the experimental data, a semi-analytic AMR element model is validated and enhanced system performance is simulated using liquid propane as a heat transfer fluid. In addition, the regenerator composition and fluid flow are simultaneously optimized using a differential evolution algorithm. Simulation results indicate that a natural gas liquefier with a 160 K temperature span and a second-law efficiency exceeding 20% is achievable.</p>
dc.identifier archive/lib.dr.iastate.edu/ameslab_manuscripts/414/
dc.identifier.articleid 1416
dc.identifier.contextkey 14988037
dc.identifier.s3bucket isulib-bepress-aws-west
dc.identifier.submissionpath ameslab_manuscripts/414
dc.identifier.uri https://dr.lib.iastate.edu/handle/20.500.12876/7359
dc.language.iso en
dc.relation.ispartofseries IS-J 9904
dc.source.bitstream archive/lib.dr.iastate.edu/ameslab_manuscripts/414/IS_J_9904.pdf|||Sat Jan 15 00:10:53 UTC 2022
dc.source.uri 10.1016/j.apenergy.2018.12.012
dc.subject.disciplines Materials Science and Engineering
dc.subject.keywords Active magnetic regenerator
dc.subject.keywords Magnetocaloric effect
dc.subject.keywords Superconducting magnet
dc.subject.keywords Liquefaction
dc.subject.keywords Optimization
dc.title Performance investigation of a high-field active magnetic regenerator
dc.type article
dc.type.genre article
dspace.entity.type Publication
relation.isOrgUnitOfPublication 25913818-6714-4be5-89a6-f70c8facdf7e
relation.isOrgUnitOfPublication bf9f7e3e-25bd-44d3-b49c-ed98372dee5e
File
Original bundle
Now showing 1 - 1 of 1
Name:
IS_J_9904.pdf
Size:
5.79 MB
Format:
Adobe Portable Document Format
Description:
Collections