Elastodynamic Optical Theorem for the Evaluation of Scattering Cross-Sections for a Crack

Thumbnail Image
Date
1997
Authors
Kitahara, M.
Nakagawa, K.
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract

Scattering cross-sections are calculated for a crack in three-dimensional elastic solids. The crack opening displacements are evaluated first by the boundary element methods. Then the scattering amplitudes for the crack are derived from the far-field representations of the scattered fields. In the final step to calculate the scattering cross-sections from scattering amplitudes, two methods are compared. One is the method based on the definition and here the scattering cross-section is calculated from the integration of the differential cross-sections over the solid angle. The other is the method based on the elastodynamic counterpart of the optical theorem. It is verified that the results obtained from the elastodynamic optical theorem are accurate enough to evaluate the scattering cross-section for the crack in elastic solids.

Series Number
Journal Issue
Is Version Of
Versions
Academic or Administrative Unit
Type
event
Comments
Rights Statement
Copyright
Wed Jan 01 00:00:00 UTC 1997
Funding
DOI
Supplemental Resources