Design and Analysis of an Array of Square Microstrip Patches for Nondestructive Measurement of Inner Material Properties of Various Structures Using Swept Microwave Frequencies

Thumbnail Image
Date
1990
Authors
Zoughi, Reza
Vaughan, Timothy
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract

There are several microwave techniques and probes available for characterizing inner properties of materials [1]. Microstrip patches operating in cavity modes are well suited for determining the dielectric properties of materials. A microstrip patch can be characterized by its resonant frequency and quality factor (Q-factor) when operating in free-space. When the patch is covered by another material whose dielectric properties (real and imaginary parts) are different than that of free-space, resonant frequency and Q-factor of the patch will change. The changes in these two parameters are then related to the real and imaginary parts of the material permittivity. Subsequently, the permittivity of the material is related to its moisture content, density, temperature, grain size, etc. via available dielectric mixing models [2]. Such a device can be placed inside a material temporarily (snow pack for avalanche prediction) or permanently (concrete structures for water content and crack detection).

Series Number
Journal Issue
Is Version Of
Versions
Academic or Administrative Unit
Type
event
Comments
Rights Statement
Copyright
Mon Jan 01 00:00:00 UTC 1990
Funding
DOI
Supplemental Resources