Imaging stress and magnetism at high pressures using a nanoscale quantum sensor Hsieh, S. Levitas, Valery Bhattacharyya, P. Zu, C. Mittiga, T. Smart, T. Machado, F. Kobrin, B. Hohn, T. Rui, N. Kamrani, Mehdi Chatterjee, S. Choi, S. Zaletel, M. Struzhkin, V. Moore, J. Levitas, Valery Jeanloz, R. Yao, N.
dc.contributor.department Aerospace Engineering
dc.contributor.department Ames Laboratory
dc.contributor.department Mechanical Engineering
dc.contributor.department Materials Science and Engineering 2019-01-10T00:46:13.000 2020-06-29T22:45:31Z 2020-06-29T22:45:31Z Mon Jan 01 00:00:00 UTC 2018 2018-12-20
dc.description.abstract <p>Pressure alters the physical, chemical and electronic properties of matter. The development of the diamond anvil cell (DAC) enables tabletop experiments to investigate a diverse landscape of high-pressure phenomena ranging from the properties of planetary interiors to transitions between quantum mechanical phases. In this work, we introduce and utilize a novel nanoscale sensing platform, which integrates nitrogen-vacancy (NV) color centers directly into the culet (tip) of diamond anvils. We demonstrate the versatility of this platform by performing diffraction-limited imaging (~600 nm) of both stress fields and magnetism, up to pressures ~30 GPa and for temperatures ranging from 25-340 K. For the former, we quantify all six (normal and shear) stress components with accuracy <0.01 GPa, offering unique new capabilities for characterizing the strength and effective viscosity of solids and fluids under pressure. For the latter, we demonstrate vector magnetic field imaging with dipole accuracy <10−11 emu, enabling us to measure the pressure-driven α↔ε phase transition in iron as well as the complex pressure-temperature phase diagram of gadolinium. In addition to DC vector magnetometry, we highlight a complementary NV-sensing modality using T1 noise spectroscopy; crucially, this demonstrates our ability to characterize phase transitions even in the absence of static magnetic signatures. By integrating an atomic-scale sensor directly into DACs, our platform enables the in situ imaging of elastic, electric and magnetic phenomena at high pressures.</p>
dc.description.comments <p>This is a pre-print of the article Hsieh, S., P. Bhattacharyya, C. Zu, T. Mittiga, T. J. Smart, F. Machado, B. Kobrin et al. "Imaging stress and magnetism at high pressures using a nanoscale quantum sensor." <em>arXiv preprint arXiv:1812.08796</em> (2018). Posted with permission.</p>
dc.format.mimetype application/pdf
dc.identifier archive/
dc.identifier.articleid 1138
dc.identifier.contextkey 13556856
dc.identifier.s3bucket isulib-bepress-aws-west
dc.identifier.submissionpath aere_pubs/137
dc.language.iso en
dc.source.bitstream archive/|||Fri Jan 14 19:59:08 UTC 2022
dc.subject.disciplines Aerospace Engineering
dc.subject.disciplines Condensed Matter Physics
dc.subject.disciplines Materials Science and Engineering
dc.subject.disciplines Mechanical Engineering
dc.subject.disciplines Nanoscience and Nanotechnology
dc.title Imaging stress and magnetism at high pressures using a nanoscale quantum sensor
dc.type article
dc.type.genre article
dspace.entity.type Publication
relation.isAuthorOfPublication 850871e3-115a-428e-82cc-cbfafef5cf66
relation.isOrgUnitOfPublication 047b23ca-7bd7-4194-b084-c4181d33d95d
relation.isOrgUnitOfPublication 25913818-6714-4be5-89a6-f70c8facdf7e
relation.isOrgUnitOfPublication 6d38ab0f-8cc2-4ad3-90b1-67a60c5a6f59
relation.isOrgUnitOfPublication bf9f7e3e-25bd-44d3-b49c-ed98372dee5e
Original bundle
Now showing 1 - 1 of 1
8.1 MB
Adobe Portable Document Format