Variants of zero forcing and their applications to the minimum rank problem

Thumbnail Image
Date
2017-01-01
Authors
Lin, Chin-Hung
Major Professor
Advisor
Leslie Hogben
Steve Butler
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Altmetrics
Authors
Research Projects
Organizational Units
Organizational Unit
Mathematics
Welcome to the exciting world of mathematics at Iowa State University. From cracking codes to modeling the spread of diseases, our program offers something for everyone. With a wide range of courses and research opportunities, you will have the chance to delve deep into the world of mathematics and discover your own unique talents and interests. Whether you dream of working for a top tech company, teaching at a prestigious university, or pursuing cutting-edge research, join us and discover the limitless potential of mathematics at Iowa State University!
Journal Issue
Is Version Of
Versions
Series
Department
Mathematics
Abstract

The minimum rank problem refers to finding the smallest possible rank, or equivalently the largest possible nullity, among matrices under certain restrictions. These restrictions can be the zero-nonzero pattern, conditions on the inertia, or other properties of a matrix. Zero forcing is a powerful technique for controlling the nullity and plays a significant role in the minimum rank problem. This thesis introduces several zero forcing parameters and their applications on the minimum rank problem.

Zero-nonzero patterns can be described by graphs: The edges (including the loops) represent the nonzero entries, while the non-edges correspond to the zero entries. For simple graphs, where no loops are allowed, the diagonal entries can be any real numbers. The maximum nullity of a graph is the maximum nullity among symmetric matrices with the pattern described by the graph. In Chapter 2, the odd cycle zero forcing number Zoc(G) and the enhanced odd cycle zero forcing number Ẑoc(G) are introduced as bounds for the maximum nullities of loop graphs G and simple graphs G, respectively. Also, a relation between loop graphs and simple graphs through graph blowups is developed.

The Colin de Verdià  à ¨re type parameter ξ(G) is defined as the maximum nullity of real symmetric matrices A with the pattern described by G and with the Strong Arnold Property (SAP), which means X = O is the only symmetric matrix that satisfies A ○ X = I ○ X = AX = O (here ○ is the entrywise product). Chapter 3 introduces zero forcing parameters Zsap(G) and Zvc(G); we show that Zsap(G) = 0 implies every symmetric matrix with the pattern described by G has the SAP and that the inequality M(G) − Zvc(G) ≤ ξ(G) holds for every graph G. Also, the values of ξ(G) are computed for all graphs up to 7 vertices, establishing ξ(G) = ⌊Z⌋(G) for these graphs.

Comments
Description
Keywords
Citation
Source
Subject Categories
Copyright
Sun Jan 01 00:00:00 UTC 2017