Bootstrapping the sample quantile based on weakly dependent observations

Thumbnail Image
Date
2004-01-01
Authors
Sun, Shuxia
Major Professor
Advisor
Soumendra N. Lahiri
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Altmetrics
Abstract

In this work, we investigate consistency properties of normal approximation and block bootstrap approximations for sample quantiles of weakly dependent data. Under mild weak dependence conditions and mild smoothness conditions on the one-dimensional marginal distribution function, we show that the moving block bootstrap (MBB) method provides a valid approximation to the distribution of normalized sample quantile and the corresponding MBB estimator of the asymptotic variance is also strongly consistent. Along the line, we also examine the rate of convergence of the MBB approximation to the distribution of the sample quantile, and prove a Berry-Esseen Theorem, which indicates that the normal approximation to the distribution of the sample quantile under weak dependence is of order O(n-1/2).

Series Number
Journal Issue
Is Version Of
Versions
Series
Academic or Administrative Unit
Type
dissertation
Comments
Rights Statement
Copyright
Thu Jan 01 00:00:00 UTC 2004
Funding
Subject Categories
Keywords
Supplemental Resources
Source