Identification of RoCYP01 (CYP716A155) enables construction of engineered yeast for high-yield production of betulinic acid

Huang, Jiajian
Zha, Wenlong
Peters, Reuben
An, Tianyue
Dong, Hua
Huang, Ying
Wang, Dong
Yu, Rongmin
Duan, Lixin
Zhang, Xueli
Peters, Reuben
Dai, Zhubo
Zi, Jiachen
Journal Title
Journal ISSN
Volume Title
Research Projects
Organizational Units
Journal Issue

Betulinic acid (BA) and its derivatives possess potent pharmacological activity against cancer and HIV. As with many phytochemicals, access to BA is limited by the requirement for laborious extraction from plant biomass where it is found in low amounts. This might be alleviated by metabolically engineering production of BA into an industrially relevant microbe such as Saccharomyces cerevisiae (yeast), which requires complete elucidation of the corresponding biosynthetic pathway. However, while cytochrome P450 enzymes (CYPs) that can oxidize lupeol into BA have been previously identified from the CYP716A subfamily, these generally do not seem to be specific to such biosynthesis and, in any case, have not been shown to enable high-yielding metabolic engineering. Here RoCYP01 (CYP716A155) was identified from the BA-producing plant Rosmarinus officinalis (rosemary) and demonstrated to effectively convert lupeol into BA, with strong correlation of its expression and BA accumulation. This was further utilized to construct a yeast strain that yields > 1 g/L of BA, providing a viable route for biotechnological production of this valuable triterpenoid.

<p>This is a manuscript of an article published as Huang, Jiajian, Wenlong Zha, Tianyue An, Hua Dong, Ying Huang, Dong Wang, Rongmin Yu et al. "Identification of RoCYP01 (CYP716A155) enables construction of engineered yeast for high-yield production of betulinic acid." <em>Applied microbiology and biotechnology</em> (2019). doi: <a href="" target="_blank">10.1007/s00253-019-10004-z</a>. Posted with permission.</p>
betulinic acid, cytochrome P450, synthetic biology, yeast Introduction