Automatic Choreography Repair

Thumbnail Image
Date
2015-02-01
Authors
Basu, Samik
Bultan, Tevfik
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Authors
Research Projects
Organizational Units
Organizational Unit
Computer Science

Computer Science—the theory, representation, processing, communication and use of information—is fundamentally transforming every aspect of human endeavor. The Department of Computer Science at Iowa State University advances computational and information sciences through; 1. educational and research programs within and beyond the university; 2. active engagement to help define national and international research, and 3. educational agendas, and sustained commitment to graduating leaders for academia, industry and government.

History
The Computer Science Department was officially established in 1969, with Robert Stewart serving as the founding Department Chair. Faculty were composed of joint appointments with Mathematics, Statistics, and Electrical Engineering. In 1969, the building which now houses the Computer Science department, then simply called the Computer Science building, was completed. Later it was named Atanasoff Hall. Throughout the 1980s to present, the department expanded and developed its teaching and research agendas to cover many areas of computing.

Dates of Existence
1969-present

Related Units

Journal Issue
Is Version Of
Versions
Series
Department
Abstract

Choreography analysis is a crucial problem in concurrent and distributed system development. A choreography specifies the desired ordering of message exchanges among the components of a system. The realizability of a choreography amounts to determining the existence of components whose communication behavior conforms to the given choreography. Recently, the choreography realizability problem has been proved to be decidable. In this paper, we investigate the repairability of un- realizable choreographies, where the goal is to identify a set of changes to a given un-realizable choreography that will make it realizable. We present a technique for automatically repairing un-realizable choreographies and provide formal guarantees of correctness and termination. We show the viability of our technique by applying it successfully for several small but representative unrealizable choregraphies from the domain of Singulary OS contract and Web services.

Comments
Description
Keywords
Citation
DOI
Source
Subject Categories
Copyright
Collections