Influence of carbon to nitrogen ratios on soybean somatic embryo (cv. Jack) growth and composition

Thumbnail Image
Date
2013-06-01
Authors
Truong, Quyen
Koch, Kaelynn
Yoon, Jong
Everard, John
Shanks, Jacqueline
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Authors
Person
Shanks, Jacqueline
Professor
Research Projects
Organizational Units
Organizational Unit
Chemical and Biological Engineering

The function of the Department of Chemical and Biological Engineering has been to prepare students for the study and application of chemistry in industry. This focus has included preparation for employment in various industries as well as the development, design, and operation of equipment and processes within industry.Through the CBE Department, Iowa State University is nationally recognized for its initiatives in bioinformatics, biomaterials, bioproducts, metabolic/tissue engineering, multiphase computational fluid dynamics, advanced polymeric materials and nanostructured materials.

History
The Department of Chemical Engineering was founded in 1913 under the Department of Physics and Illuminating Engineering. From 1915 to 1931 it was jointly administered by the Divisions of Industrial Science and Engineering, and from 1931 onward it has been under the Division/College of Engineering. In 1928 it merged with Mining Engineering, and from 1973–1979 it merged with Nuclear Engineering. It became Chemical and Biological Engineering in 2005.

Dates of Existence
1913 - present

Historical Names

  • Department of Chemical Engineering (1913–1928)
  • Department of Chemical and Mining Engineering (1928–1957)
  • Department of Chemical Engineering (1957–1973, 1979–2005)
    • Department of Chemical and Biological Engineering (2005–present)

    Related Units

Journal Issue
Is Version Of
Versions
Series
Department
Chemical and Biological Engineering
Abstract

Soybean [Glycine max (L.) Merr.] seed are valued for their protein and oil content. Soybean somatic embryos cultured in Soybean Histodifferentiation and Maturation (SHaM) medium were examined for their suitability as a model system for developing an understanding of assimilate partitioning and metabolic control points for protein and oil biosynthesis in soybean seed. This report describes the growth dynamics and compositional changes of SHaM embryos in response to change in the carbon to nitrogen ratio of the medium. It was postulated that at media compositions that were sufficient to support maximal growth rates, changes in the C:N ratio are likely to influence the partitioning of resources between the various storage products, especially protein and oil. As postulated, at steady-state growth rates, embryo protein content was strongly correlated with decreasing C:N ratios and increasing glutamine consumption rates. However, oil content remained relatively unchanged across the C:N ratio range tested, and resources were instead directed towards the starch and residual biomass (estimated by mass balance) pools in response to increasing C:N ratios. Protein and oil were inversely related only at concentrations of sucrose in the medium <88mM, where carbon limited growth and no starch was found to accumulate in the tissues. These observations and the high reproducibility in the data indicate that SHaM embryos are an ideal model system for the application of metabolic flux analysis studies designed to test hypotheses regarding assimilate partitioning in developing soybean seeds.

Comments

This is an article from Journal of Experimental Botany 64 (2013): 2985, doi: 10.1093/jxb/ert138. Posted with permission.

Description
Keywords
Citation
DOI
Copyright
Tue Jan 01 00:00:00 UTC 2013
Collections