Molecular control of the nanoscale: Effect of phosphine-chalcogenide reactivity on CdS-CdSe nanocrystal composition and morphology

Supplemental Files
Ruberu, Thanthirige Purnima
Albright, Haley
Callis, Brandon
Ward, Brittney
Cisneros, Joana
Fan, Hua-Jun
Vela, Javier
Journal Title
Journal ISSN
Volume Title
Research Projects
Organizational Units
Ames Laboratory
Organizational Unit
Organizational Unit
Journal Issue

We demonstrate molecular control of nanoscale composition, alloying, and morphology (aspect ratio) in CdS-CdSe nanocrystal dots and rods by modulating the chemical reactivity of phosphine-chalcogenide precursors. Specific molecular precursors studied were sulfides and selenides of triphenylphosphite (TPP), diphenylpropylphosphine (DPP), tributylphosphine (TBP), trioctylphosphine (TOP), and hexaethylphosphorustriamide (HPT). Computational (DFT), NMR ( 31P and 77Se), and high-temperature crossover studies unambiguously confirm a chemical bonding interaction between phosphorus and chalcogen atoms in all precursors. Phosphine-chalcogenide precursor reactivity increases in the order: TPPE < DPPE < TBPE < TOPE 1-xSex quantum dots were synthesized via single injection of a R3PS-R3PSe mixture to cadmium oleate at 250 degree C. X-ray diffraction (XRD), transmission electron microscopy (TEM), and UV/Vis and PL optical spectroscopy reveal that relative R3PS and R3PSe reactivity dictates CdS1-xSex dot chalcogen content and the extent of radial alloying (alloys vs core/shells). CdS, CdSe, and CdS1-xSex quantum rods were synthesized by injection of a single R3PE (E = S or Se) precursor or a R3PS-R3PSe mixture to cadmium-phosphonate at 320 or 250 degree C. XRD and TEM reveal that the length-to-diameter aspect ratio of CdS and CdSe nanorods is inversely proportional to R 3PE precursor reactivity. Purposely matching or mismatching R3PS-R3PSe precursor reactivity leads to CdS1-xSe x nanorods without or with axial composition gradients, respectively. We expect these observations will lead to scalable and highly predictable "bottom-up" programmed syntheses of finely heterostructured nanomaterials with well-defined architectures and properties that are tailored for precise applications.


Reprinted (adapted) with permission from ACS Nano 6 (2012): 5348, doi: 10.1021/nn301182h. Copyright 2012 American Chemical Society.

molecular control, nanocrystal composition, nanorod aspect ratio, precursor reactivity