Molecular control of the nanoscale: Effect of phosphine-chalcogenide reactivity on CdS-CdSe nanocrystal composition and morphology Ruberu, Thanthirige Purnima Albright, Haley Callis, Brandon Vela, Javier Ward, Brittney Cisneros, Joana Fan, Hua-Jun Vela, Javier
dc.contributor.department Ames National Laboratory
dc.contributor.department Chemistry 2018-02-17T06:43:44.000 2020-06-30T01:17:51Z 2020-06-30T01:17:51Z Sun Jan 01 00:00:00 UTC 2012 2013-04-22 2012-04-22
dc.description.abstract <p>We demonstrate molecular control of nanoscale composition, alloying, and morphology (aspect ratio) in CdS-CdSe nanocrystal dots and rods by modulating the chemical reactivity of phosphine-chalcogenide precursors. Specific molecular precursors studied were sulfides and selenides of triphenylphosphite (TPP), diphenylpropylphosphine (DPP), tributylphosphine (TBP), trioctylphosphine (TOP), and hexaethylphosphorustriamide (HPT). Computational (DFT), NMR ( <sup>31</sup>P and <sup>77</sup>Se), and high-temperature crossover studies unambiguously confirm a chemical bonding interaction between phosphorus and chalcogen atoms in all precursors. Phosphine-chalcogenide precursor reactivity increases in the order: TPPE < DPPE < TBPE < TOPE 1-<sub>x</sub>Se<sub>x</sub> quantum dots were synthesized via single injection of a R<sub>3</sub>PS-R<sub>3</sub>PSe mixture to cadmium oleate at 250 degree C. X-ray diffraction (XRD), transmission electron microscopy (TEM), and UV/Vis and PL optical spectroscopy reveal that relative R<sub>3</sub>PS and R<sub>3</sub>PSe reactivity dictates CdS<sub>1</sub>-xSe<sub>x</sub> dot chalcogen content and the extent of radial alloying (alloys vs core/shells). CdS, CdSe, and CdS<sub>1</sub>-<sub>x</sub>Se<sub>x</sub> quantum rods were synthesized by injection of a single R<sub>3</sub>PE (E = S or Se) precursor or a R<sub>3</sub>PS-R<sub>3</sub>PSe mixture to cadmium-phosphonate at 320 or 250 degree C. XRD and TEM reveal that the length-to-diameter aspect ratio of CdS and CdSe nanorods is inversely proportional to R 3PE precursor reactivity. Purposely matching or mismatching R<sub>3</sub>PS-R<sub>3</sub>PSe precursor reactivity leads to CdS<sub>1</sub>-<sub>x</sub>Se <sub>x</sub> nanorods without or with axial composition gradients, respectively. We expect these observations will lead to scalable and highly predictable "bottom-up" programmed syntheses of finely heterostructured nanomaterials with well-defined architectures and properties that are tailored for precise applications.</p>
dc.description.comments <p>Reprinted (adapted) with permission from <em>ACS Nano</em> 6 (2012): 5348, doi: <a href="" target="_blank">10.1021/nn301182h</a>. Copyright 2012 American Chemical Society.</p>
dc.format.mimetype application/pdf
dc.identifier archive/
dc.identifier.articleid 1133
dc.identifier.contextkey 7885526
dc.identifier.s3bucket isulib-bepress-aws-west
dc.identifier.submissionpath chem_pubs/136
dc.language.iso en
dc.source.bitstream archive/|||Fri Jan 14 19:56:26 UTC 2022
dc.source.bitstream archive/|||Fri Jan 14 19:56:28 UTC 2022
dc.source.uri 10.1021/nn301182h
dc.subject.disciplines Chemistry
dc.subject.keywords molecular control
dc.subject.keywords nanocrystal composition
dc.subject.keywords nanorod aspect ratio
dc.subject.keywords precursor reactivity
dc.title Molecular control of the nanoscale: Effect of phosphine-chalcogenide reactivity on CdS-CdSe nanocrystal composition and morphology
dc.type article
dc.type.genre article
dspace.entity.type Publication
relation.isAuthorOfPublication b1daee7a-1960-41bd-a41e-6d4625912766
relation.isOrgUnitOfPublication 25913818-6714-4be5-89a6-f70c8facdf7e
relation.isOrgUnitOfPublication 42864f6e-7a3d-4be3-8b5a-0ae3c3830a11
Original bundle
Now showing 1 - 2 of 2
No Thumbnail Available
3.65 MB
Adobe Portable Document Format
No Thumbnail Available
93.04 KB
Adobe Portable Document Format