Data-Driven Theory Refinement Algorithms for Bioinformatics

dc.contributor.author Yang, Jihoon
dc.contributor.author Parekh, Rajesh
dc.contributor.author Honavar, Vasant
dc.contributor.author Dobbs, Drena
dc.contributor.department Zoology and Genetics
dc.contributor.department Department of Computer Science
dc.contributor.department Zoology
dc.date 2018-02-18T05:13:54.000
dc.date.accessioned 2020-07-07T05:16:43Z
dc.date.available 2020-07-07T05:16:43Z
dc.date.copyright Fri Jan 01 00:00:00 UTC 1999
dc.date.embargo 2017-03-06
dc.date.issued 1999
dc.description.abstract <p>Bioinformatics and related applications call for efficient algorithms for knowledge intensive learning and data driven knowledge refinement. Knowledge based artificial neural networks offer an attractive approach to extending or modifying incomplete knowledge bases or domain theories. We present results of experiments with several such algorithms for data driven knowledge discovery and theory refinement in some simple bioinformatics applications. Results of experiments on the ribosome binding site and promoter site identification problems indicate that the performance of KBDistAl and Tiling Pyramid algorithms compares quite favorably with those of substantially more computationally demanding techniques.</p>
dc.description.comments <p>This is a proceeding from <em>International Joint Conference on Neural Networks</em> (1999): 4064, doi: <a href="https://doi.org/10.1109/IJCNN.1999.830811" target="_blank">10.1109/IJCNN.1999.830811</a>. Posted with permission.</p>
dc.format.mimetype application/pdf
dc.identifier archive/lib.dr.iastate.edu/zool_conf/1/
dc.identifier.articleid 1001
dc.identifier.contextkey 9795626
dc.identifier.s3bucket isulib-bepress-aws-west
dc.identifier.submissionpath zool_conf/1
dc.identifier.uri https://dr.lib.iastate.edu/handle/20.500.12876/92612
dc.language.iso en
dc.source.bitstream archive/lib.dr.iastate.edu/zool_conf/1/ms1999_Dobbs_DataDriven.pdf|||Fri Jan 14 17:38:02 UTC 2022
dc.source.uri 10.1109/IJCNN.1999.830811
dc.subject.disciplines Bioinformatics
dc.subject.disciplines Cell and Developmental Biology
dc.subject.disciplines Computational Biology
dc.subject.disciplines Genetics and Genomics
dc.title Data-Driven Theory Refinement Algorithms for Bioinformatics
dc.type article
dc.type.genre conference
dspace.entity.type Publication
relation.isAuthorOfPublication 7e096c4f-9007-41e4-9414-989c3ea9bc88
relation.isOrgUnitOfPublication 4a2929da-5374-4338-b62f-f5fd9e156ef9
relation.isOrgUnitOfPublication f7be4eb9-d1d0-4081-859b-b15cee251456
File
Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
ms1999_Dobbs_DataDriven.pdf
Size:
178.48 KB
Format:
Adobe Portable Document Format
Description: