Three-Phase Foam Analysis and the Development of a Lab-Scale Foaming Capacity and Stability Test for Swine Manures

dc.contributor.author Van Weelden, Mark
dc.contributor.author Andersen, Daniel
dc.contributor.author Trabue, Steven
dc.contributor.author Rosentrater, Kurt
dc.contributor.author Kerr, Brian
dc.contributor.department Department of Agricultural and Biosystems Engineering (ENG)
dc.date 2018-02-13T13:47:02.000
dc.date.accessioned 2020-06-29T22:33:30Z
dc.date.available 2020-06-29T22:33:30Z
dc.date.copyright Tue Jan 01 00:00:00 UTC 2013
dc.date.embargo 2013-08-28
dc.date.issued 2013-07-01
dc.description.abstract <p>Foam accumulation on the manure slurry at deep pit swine facilities has been linked to flash fire incidents, making it a serious safety concern for pork producers. In order to investigate this phenomenon, samples of swine manure were collected from over 50 swine production facilities in Iowa with varying levels of foam accumulation over a seven month period. These samples were tested for a number of physical and chemical parameters including temperature, pH, total solids, volatile solids, volatile fatty acid concentration, biochemical methane potential, and methane production rate. After establishing these parameters, a foaming capacity and stability test was performed where samples were placed in clear PVC tubes with air diffusers at the bottom to simulate biogas production. The amount of foam produced at a set aeration rate was recorded as a measure of foaming capacity, and foam stability was assessed by measuring the height of foam remaining at certain time intervals after aeration had ceased. The results of this test indicated that samples collected from foaming barns showed a greater capacity to produce and stabilize foam. In addition, statistical analysis indicated that manures with foam produced methane at significantly greater rates than non-foaming manures (0.154 ± 0.010 and 0.052 ± 0.003 L CH4./L slurry*day respectively, average standard error), and consequently had significantly greater fluxes of methane moving through the manure volume. On the other hand, the biochemical methane production assay suggested that manure from foaming pits had less potential to generate methane (112 ± 9 mL CH<sub>4</sub>/g VS) than non-foaming pits (129 ± 9 mL CH<sub>4</sub>/g VS), and the VFA analysis showed significantly lower concentrations in foaming pits (4472, 3486, and 1439 μg/g for the surface level and descending depths of the pit, respectively) as compared to non-foaming pits (9385,8931, and 6938 μg/g for the same sample depths). When taken together, these assays suggest enhanced anaerobic digestion efficiency from foaming barns, as well as the possible accumulation of a surfactant at the manure-air interface of foaming deep pits. Overall, this work supports a three-phase system conceptualization of foam production in swine manure deep pits, and that the control of one or more of these phases will be required for mitigation.</p>
dc.identifier archive/lib.dr.iastate.edu/abe_eng_conf/329/
dc.identifier.articleid 1334
dc.identifier.contextkey 4520367
dc.identifier.s3bucket isulib-bepress-aws-west
dc.identifier.submissionpath abe_eng_conf/329
dc.identifier.uri https://dr.lib.iastate.edu/handle/20.500.12876/349
dc.language.iso en
dc.source.bitstream archive/lib.dr.iastate.edu/abe_eng_conf/329/2013_VanWeeldenMB_ThreePhaseFoamAnalysis.pdf|||Fri Jan 14 23:36:58 UTC 2022
dc.subject.disciplines Agriculture
dc.subject.disciplines Bioresource and Agricultural Engineering
dc.subject.keywords Swine manure
dc.subject.keywords foaming
dc.subject.keywords deep pit manure storage
dc.subject.keywords anaerobic digestion
dc.subject.keywords methane production
dc.title Three-Phase Foam Analysis and the Development of a Lab-Scale Foaming Capacity and Stability Test for Swine Manures
dc.type article
dc.type.genre conference
dspace.entity.type Publication
relation.isAuthorOfPublication 18329603-49c4-4007-985d-2402929993a8
relation.isAuthorOfPublication ae6468d9-2286-48ad-9293-5cfa893ea5f3
relation.isOrgUnitOfPublication 8eb24241-0d92-4baf-ae75-08f716d30801
File
Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
2013_VanWeeldenMB_ThreePhaseFoamAnalysis.pdf
Size:
555.26 KB
Format:
Adobe Portable Document Format
Description: