Bootstrapping for Significance of Compact Clusters in Multidimensional Datasets
dc.contributor.author | Maitra, Ranjan | |
dc.contributor.author | Melnykov, Volodymyr | |
dc.contributor.author | Lahiri, Soumendra | |
dc.contributor.author | Maitra, Ranjan | |
dc.contributor.department | Statistics (LAS) | |
dc.date | 2018-02-17T18:36:13.000 | |
dc.date.accessioned | 2020-07-02T06:58:03Z | |
dc.date.available | 2020-07-02T06:58:03Z | |
dc.date.copyright | Sun Jan 01 00:00:00 UTC 2012 | |
dc.date.issued | 2012-01-30 | |
dc.description.abstract | <p>This article proposes a bootstrap approach for assessing significance in the clustering of multidimensional datasets. The procedure compares two models and declares the more complicated model a better candidate if there is significant evidence in its favor. The performance of the procedure is illustrated on two well-known classification datasets and comprehensively evaluated in terms of its ability to estimate the number of components via extensive simulation studies, with excellent results. The methodology is also applied to the problem of <em>k</em>-means color quantization of several standard images in the literature and is demonstrated to be a viable approach for determining the minimal and optimal numbers of colors needed to display an image without significant loss in resolution. Additional illustrations and performance evaluations are provided in the online supplementary material.</p> | |
dc.description.comments | <p>This is an Accepted Manuscript of an article published by Taylor & Francis in <em>Journal of the American Statistical Association</em> on January 30, 2012, available online: http://www.tandf.com/<a href="http://dx.doi.org/10.1080/01621459.2011.646935" target="_blank">10.1080/01621459.2011.646935</a>.</p> | |
dc.format.mimetype | application/pdf | |
dc.identifier | archive/lib.dr.iastate.edu/stat_las_pubs/75/ | |
dc.identifier.articleid | 1073 | |
dc.identifier.contextkey | 8820856 | |
dc.identifier.s3bucket | isulib-bepress-aws-west | |
dc.identifier.submissionpath | stat_las_pubs/75 | |
dc.identifier.uri | https://dr.lib.iastate.edu/handle/20.500.12876/90676 | |
dc.language.iso | en | |
dc.source.bitstream | archive/lib.dr.iastate.edu/stat_las_pubs/75/2012_MaitraR_BootstrappingSignificanceCompact.pdf|||Sat Jan 15 01:49:13 UTC 2022 | |
dc.source.uri | 10.1080/01621459.2011.646935 | |
dc.subject.disciplines | Statistics and Probability | |
dc.subject.keywords | Hierarchical clustering | |
dc.subject.keywords | k-means algorithm | |
dc.subject.keywords | Overlap | |
dc.subject.keywords | Prohorov metric | |
dc.subject.keywords | p-value quantitation map | |
dc.subject.keywords | q-value quantitation map | |
dc.title | Bootstrapping for Significance of Compact Clusters in Multidimensional Datasets | |
dc.type | article | |
dc.type.genre | article | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | 461ce0bf-36aa-4bb9-b932-789dacd4065d | |
relation.isOrgUnitOfPublication | 264904d9-9e66-4169-8e11-034e537ddbca |
File
Original bundle
1 - 1 of 1
No Thumbnail Available
- Name:
- 2012_MaitraR_BootstrappingSignificanceCompact.pdf
- Size:
- 4.43 MB
- Format:
- Adobe Portable Document Format
- Description: