Bootstrapping for Significance of Compact Clusters in Multidimensional Datasets

dc.contributor.author Maitra, Ranjan
dc.contributor.author Melnykov, Volodymyr
dc.contributor.author Lahiri, Soumendra
dc.contributor.author Maitra, Ranjan
dc.contributor.department Statistics (LAS)
dc.date 2018-02-17T18:36:13.000
dc.date.accessioned 2020-07-02T06:58:03Z
dc.date.available 2020-07-02T06:58:03Z
dc.date.copyright Sun Jan 01 00:00:00 UTC 2012
dc.date.issued 2012-01-30
dc.description.abstract <p>This article proposes a bootstrap approach for assessing significance in the clustering of multidimensional datasets. The procedure compares two models and declares the more complicated model a better candidate if there is significant evidence in its favor. The performance of the procedure is illustrated on two well-known classification datasets and comprehensively evaluated in terms of its ability to estimate the number of components via extensive simulation studies, with excellent results. The methodology is also applied to the problem of <em>k</em>-means color quantization of several standard images in the literature and is demonstrated to be a viable approach for determining the minimal and optimal numbers of colors needed to display an image without significant loss in resolution. Additional illustrations and performance evaluations are provided in the online supplementary material.</p>
dc.description.comments <p>This is an Accepted Manuscript of an article published by Taylor & Francis in <em>Journal of the American Statistical Association</em> on January 30, 2012, available online: http://www.tandf.com/<a href="http://dx.doi.org/10.1080/01621459.2011.646935" target="_blank">10.1080/01621459.2011.646935</a>.</p>
dc.format.mimetype application/pdf
dc.identifier archive/lib.dr.iastate.edu/stat_las_pubs/75/
dc.identifier.articleid 1073
dc.identifier.contextkey 8820856
dc.identifier.s3bucket isulib-bepress-aws-west
dc.identifier.submissionpath stat_las_pubs/75
dc.identifier.uri https://dr.lib.iastate.edu/handle/20.500.12876/90676
dc.language.iso en
dc.source.bitstream archive/lib.dr.iastate.edu/stat_las_pubs/75/2012_MaitraR_BootstrappingSignificanceCompact.pdf|||Sat Jan 15 01:49:13 UTC 2022
dc.source.uri 10.1080/01621459.2011.646935
dc.subject.disciplines Statistics and Probability
dc.subject.keywords Hierarchical clustering
dc.subject.keywords k-means algorithm
dc.subject.keywords Overlap
dc.subject.keywords Prohorov metric
dc.subject.keywords p-value quantitation map
dc.subject.keywords q-value quantitation map
dc.title Bootstrapping for Significance of Compact Clusters in Multidimensional Datasets
dc.type article
dc.type.genre article
dspace.entity.type Publication
relation.isAuthorOfPublication 461ce0bf-36aa-4bb9-b932-789dacd4065d
relation.isOrgUnitOfPublication 264904d9-9e66-4169-8e11-034e537ddbca
File
Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
2012_MaitraR_BootstrappingSignificanceCompact.pdf
Size:
4.43 MB
Format:
Adobe Portable Document Format
Description:
Collections