Mechanistic Understanding of Material Detachment During Micro-Scale Polishing

Thumbnail Image
Date
2003-11-01
Authors
Che, W.
Guo, Y.
Chandra, Abhijit
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Authors
Person
Bastawros, Ashraf
Professor
Research Projects
Organizational Units
Organizational Unit
Aerospace Engineering

The Department of Aerospace Engineering seeks to instruct the design, analysis, testing, and operation of vehicles which operate in air, water, or space, including studies of aerodynamics, structure mechanics, propulsion, and the like.

History
The Department of Aerospace Engineering was organized as the Department of Aeronautical Engineering in 1942. Its name was changed to the Department of Aerospace Engineering in 1961. In 1990, the department absorbed the Department of Engineering Science and Mechanics and became the Department of Aerospace Engineering and Engineering Mechanics. In 2003 the name was changed back to the Department of Aerospace Engineering.

Dates of Existence
1942-present

Historical Names

  • Department of Aerospace Engineering and Engineering Mechanics (1990-2003)

Related Units

Organizational Unit
Mechanical Engineering
The Department of Mechanical Engineering at Iowa State University is where innovation thrives and the impossible is made possible. This is where your passion for problem-solving and hands-on learning can make a real difference in our world. Whether you’re helping improve the environment, creating safer automobiles, or advancing medical technologies, and athletic performance, the Department of Mechanical Engineering gives you the tools and talent to blaze your own trail to an amazing career.
Journal Issue
Is Version Of
Versions
Series
Abstract

A combined experimental and modeling approach has been devised to understand the material removal mechanism during abrasion of ductile copper discs. First, single grit scratch intersection experiments are conducted at the micro-scale (with 1-30 mm depth of cut). This is followed by FEM analysis. Then a simple analytical model is developed, and the model prediction is verified against experimental observations and results from numerical simulations. A characteristic material detachment length is correlated between experimental observations and model predictions. The insights gained from this exercise may be used to develop a mechanistic model of material removal in chemical mechanical polishing (CMP) of ductile materials.

Comments

This article is from Journal of Manufacturing Science and Engineering 125 (2003): 731, doi: 10.1115/1.1619964. Posted with permission.

Description
Keywords
Citation
DOI
Copyright
Wed Jan 01 00:00:00 UTC 2003
Collections