Teleporting through virtual environments: Effects of path scale and environment scale on spatial updating

Date
2020-05-01
Authors
Kelly, Jonathan
Ostrander, Alec
Lim, Alex
Cherep, Lucia
Gilbert, Stephen
Journal Title
Journal ISSN
Volume Title
Publisher
Altmetrics
Authors
Research Projects
Organizational Units
Journal Issue
Series
Abstract

Virtual reality systems typically allow users to physically walk and turn, but virtual environments (VEs) often exceed the available walking space. Teleporting has become a common user interface, whereby the user aims a laser pointer to indicate the desired location, and sometimes orientation, in the VE before being transported without self-motion cues. This study evaluated the influence of rotational self-motion cues on spatial updating performance when teleporting, and whether the importance of rotational cues varies across movement scale and environment scale. Participants performed a triangle completion task by teleporting along two outbound path legs before pointing to the unmarked path origin. Rotational self-motion reduced overall errors across all levels of movement scale and environment scale, though it also introduced a slight bias toward under-rotation. The importance of rotational self-motion was exaggerated when navigating large triangles and when the surrounding environment was large. Navigating a large triangle within a small VE brought participants closer to surrounding landmarks and boundaries, which led to greater reliance on piloting (landmark-based navigation) and therefore reduced-but did not eliminate-the impact of rotational self-motion cues. These results indicate that rotational self-motion cues are important when teleporting, and that navigation can be improved by enabling piloting.

Description

This is a manuscript of an article published as Kelly, J. W., A. G. Ostrander, A. F. Lim, L. A. Cherep, and S. B. Gilbert. "Teleporting through virtual environments: Effects of path scale and environment scale on spatial updating." IEEE Transactions on Visualization and Computer Graphics 26, no. 5 (2020): 1841-1850. DOI: 10.1109/TVCG.2020.2973051. Posted with permission.

Keywords
Navigation, Spatial cognition, Virtual reality, Teleporting
Citation
DOI
Collections