A counterexample to a conjecture on facial unique-maximal colorings
Date
Authors
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
A facial unique-maximum coloring of a plane graph is a proper vertex coloring by natural numbers where on each face α the maximal color appears exactly once on the vertices of α. Fabrici and Göring [4] proved that six colors are enough for any plane graph and conjectured that four colors suffice. This conjecture is a strengthening of the Four Color theorem. Wendland [6] later decreased the upper bound from six to five. In this note, we disprove the conjecture by giving an infinite family of counterexamples. s we conclude that facial unique-maximum chromatic number of the sphere is five.
Series Number
Journal Issue
Is Version Of
Versions
Series
Academic or Administrative Unit
Type
Comments
This is a manuscript of an article published as Lidický, Bernard, Kacy Messerschmidt, and Riste Škrekovski. "A counterexample to a conjecture on facial unique-maximal colorings." Discrete Applied Mathematics 237 (2018): 123-125. doi: 10.1016/j.dam.2017.11.037. Posted with permission.