Potential Function Explain of the Quick Algorithm of Synergetic Neural Network

dc.contributor.author Bao, Jie
dc.contributor.department Department of Computer Science
dc.date 2018-02-13T23:49:42.000
dc.date.accessioned 2020-06-30T01:56:00Z
dc.date.available 2020-06-30T01:56:00Z
dc.date.issued 2001-01-01
dc.description.abstract <p>We can determine the winner pattern of the synergetic neural network directly from order parameters and attention parameters when the attention parameters are equal or constant. In this paper, we explain that the basis of that quick algorithm is that the potential function of network and attractive domain of each attractor are fully determined for given attention parameters, and there is an analytic approximation for the division of attractive domains.</p>
dc.identifier archive/lib.dr.iastate.edu/cs_techreports/232/
dc.identifier.articleid 1236
dc.identifier.contextkey 5462743
dc.identifier.s3bucket isulib-bepress-aws-west
dc.identifier.submissionpath cs_techreports/232
dc.identifier.uri https://dr.lib.iastate.edu/handle/20.500.12876/20053
dc.source.bitstream archive/lib.dr.iastate.edu/cs_techreports/232/2001_06_24_potential_tr.pdf|||Fri Jan 14 22:47:44 UTC 2022
dc.subject.disciplines Artificial Intelligence and Robotics
dc.title Potential Function Explain of the Quick Algorithm of Synergetic Neural Network
dc.type article
dc.type.genre article
dspace.entity.type Publication
relation.isOrgUnitOfPublication f7be4eb9-d1d0-4081-859b-b15cee251456
File
Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
2001_06_24_potential_tr.pdf
Size:
441.8 KB
Format:
Adobe Portable Document Format
Description:
Collections