Shortened universal cycles for permutations

Date
2022-04-06
Authors
Kirsch, Rachel
Lidicky, Bernard
Sibley, Clare
Sprangel, Elizabeth
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
© 2022 The Authors
Altmetrics
Authors
Research Projects
Organizational Units
Mathematics
Organizational Unit
Journal Issue
Series
Department
Mathematics
Abstract
Kitaev, Potapov, and Vajnovszki [On shortening u-cycles and u-words for permutations, Discrete Appl. Math, 2019] described how to shorten universal words for permutations, to length n!+n−1−i(n−1) for any i∈[(n−2)!], by introducing incomparable elements. They conjectured that it is also possible to use incomparable elements to shorten universal cycles for permutations to length n!−i(n−1) for any i∈[(n−2)!]. In this note we prove their conjecture. The proof is constructive, and, on the way, we also show a new method for constructing universal cycles for permutations.
Comments
This preprint is made available through arXiv at doi:https://doi.org/10.48550/arXiv.2204.02910.
Description
Keywords
Citation
DOI
Collections