Shortened universal cycles for permutations

dc.contributor.author Kirsch, Rachel
dc.contributor.author Lidicky, Bernard
dc.contributor.author Sibley, Clare
dc.contributor.author Sprangel, Elizabeth
dc.contributor.department Mathematics
dc.date.accessioned 2022-04-15T15:29:37Z
dc.date.available 2022-04-15T15:29:37Z
dc.date.issued 2022-04-06
dc.description.abstract Kitaev, Potapov, and Vajnovszki [On shortening u-cycles and u-words for permutations, Discrete Appl. Math, 2019] described how to shorten universal words for permutations, to length n!+n−1−i(n−1) for any i∈[(n−2)!], by introducing incomparable elements. They conjectured that it is also possible to use incomparable elements to shorten universal cycles for permutations to length n!−i(n−1) for any i∈[(n−2)!]. In this note we prove their conjecture. The proof is constructive, and, on the way, we also show a new method for constructing universal cycles for permutations.
dc.description.comments This preprint is made available through arXiv at doi:https://doi.org/10.48550/arXiv.2204.02910.
dc.identifier.uri https://dr.lib.iastate.edu/handle/20.500.12876/ywAbGK4v
dc.language.iso en
dc.publisher © 2022 The Authors
dc.relation.isversionof Shortened universal cycles for permutations
dc.source.uri https://doi.org/10.48550/arXiv.2204.02910 *
dc.title Shortened universal cycles for permutations
dc.type Preprint
dspace.entity.type Publication
relation.isAuthorOfPublication a1d8f5ab-9124-4104-981c-8ba1e426e3ff
relation.isOrgUnitOfPublication 82295b2b-0f85-4929-9659-075c93e82c48
relation.isVersionOf 39603026-9ad4-47d0-bd6c-c2647e55cc8a
File
Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
2022-Lidicky-ShortenedUniversalPreprint.pdf
Size:
353.56 KB
Format:
Adobe Portable Document Format
Description:
Collections