Shortened universal cycles for permutations
dc.contributor.author | Kirsch, Rachel | |
dc.contributor.author | Lidicky, Bernard | |
dc.contributor.author | Sibley, Clare | |
dc.contributor.author | Sprangel, Elizabeth | |
dc.contributor.department | Mathematics | |
dc.date.accessioned | 2022-04-15T15:29:37Z | |
dc.date.available | 2022-04-15T15:29:37Z | |
dc.date.issued | 2022-04-06 | |
dc.description.abstract | Kitaev, Potapov, and Vajnovszki [On shortening u-cycles and u-words for permutations, Discrete Appl. Math, 2019] described how to shorten universal words for permutations, to length n!+n−1−i(n−1) for any i∈[(n−2)!], by introducing incomparable elements. They conjectured that it is also possible to use incomparable elements to shorten universal cycles for permutations to length n!−i(n−1) for any i∈[(n−2)!]. In this note we prove their conjecture. The proof is constructive, and, on the way, we also show a new method for constructing universal cycles for permutations. | |
dc.description.comments | This preprint is made available through arXiv at doi:https://doi.org/10.48550/arXiv.2204.02910. | |
dc.identifier.uri | https://dr.lib.iastate.edu/handle/20.500.12876/ywAbGK4v | |
dc.language.iso | en | |
dc.publisher | © 2022 The Authors | |
dc.relation.isversionof | Shortened universal cycles for permutations | |
dc.source.uri | https://doi.org/10.48550/arXiv.2204.02910 | * |
dc.title | Shortened universal cycles for permutations | |
dc.type | Preprint | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | a1d8f5ab-9124-4104-981c-8ba1e426e3ff | |
relation.isOrgUnitOfPublication | 82295b2b-0f85-4929-9659-075c93e82c48 | |
relation.isVersionOf | 39603026-9ad4-47d0-bd6c-c2647e55cc8a |
File
Original bundle
1 - 1 of 1
No Thumbnail Available
- Name:
- 2022-Lidicky-ShortenedUniversalPreprint.pdf
- Size:
- 353.56 KB
- Format:
- Adobe Portable Document Format
- Description: