CFD simulations of stirred-tank reactors for gas-liquid and gas-liquid-solid systems using OpenFOAM®

Passalacqua, Alberto
Hu, Xiaofei
Ilgun, Aziz
Passalacqua, Alberto
Fox, Rodney
Fox, Rodney
Bertola, Francesco
Milosevic, Miran
Visscher, Frans
Major Professor
Committee Member
Journal Title
Journal ISSN
Volume Title
Research Projects
Organizational Units
Mechanical Engineering
Organizational Unit
Journal Issue
Mechanical EngineeringChemical and Biological Engineering

An open-source CFD software OpenFOAM® is used to simulate two multiphase stirred-tank reactors relevant to industrial processes such as slurry polymerization and fuel production. Gas-liquid simulations are first performed in a single-impeller stirred-tank reactor, studied experimentally by Ford, J. J., T. J. Heindel, T. C. Jensen, and J. B. Drake. 2008. “X-Ray Computed Tomography of a Gas-Sparged Stirred-Tank Reactor.” Chemical Engineering Science 63: 2075–85. Three impeller rotation speeds (200, 350 and 700 rpm) with three different bubble diameters (0.5, 1.5 and 2.5 mm) are investigated. Flow patterns compared qualitatively to those from experiments. Compared to the experimental data, the simulations are in relatively good agreement for gas holdup in the reactor. The second multiphase system is a multi-impeller stirred-tank reactor, studied experimentally by Shewale, S. D., and A. B. Pandit. 2006. “Studies in Multiple Impeller Agitated Gas-Liquid Contractors.” Chemical Engineering Science 61: 486–504. Gas-liquid simulations are performed at two impeller rotation speeds (3.75 and 5.08 RPS). The simulated flow patterns agree with published pictures from the experiments. Gas-liquid-solid simulations of the multi-impeller stirred-tank reactor are also carried out at impeller rotation speed 5.08 RPS. The addition of solid particles with a volume fraction characteristic of slurry reactors changes the flow pattern significantly. The bottom Rushton turbine becomes flooded, while the upper pitched-blade downflow turbines present a radial-pumping flow pattern instead of down-pumping. Nonetheless, the solid phase has a similar flow pattern to the liquid phase, indicating that the particles modify the effective density of the fluid.


This is a manuscript of an article published as Hu, Xiaofei, Aziz Dogan Ilgun, Alberto Passalacqua, Rodney O. Fox, Francesco Bertola, Miran Milosevic, and Frans Visscher. "CFD simulations of stirred-tank reactors for gas-liquid and gas-liquid-solid systems using OpenFOAM®." International Journal of Chemical Reactor Engineering (2021). DOI: 10.1515/ijcre-2019-0229. The final publication is available at Posted with permission.