CFD simulations of stirred-tank reactors for gas-liquid and gas-liquid-solid systems using OpenFOAM®
dc.contributor.author | Hu, Xiaofei | |
dc.contributor.author | Ilgun, Aziz | |
dc.contributor.author | Passalacqua, Alberto | |
dc.contributor.author | Bertola, Francesco | |
dc.contributor.author | Fox, Rodney | |
dc.contributor.author | Milosevic, Miran | |
dc.contributor.author | Visscher, Frans | |
dc.contributor.department | Department of Mechanical Engineering | |
dc.contributor.department | Department of Chemical and Biological Engineering | |
dc.date | 2021-03-24T21:54:02.000 | |
dc.date.accessioned | 2021-04-30T00:10:32Z | |
dc.date.available | 2021-04-30T00:10:32Z | |
dc.date.copyright | Fri Jan 01 00:00:00 UTC 2021 | |
dc.date.issued | 2021-02-05 | |
dc.description.abstract | <p>An open-source CFD software OpenFOAM® is used to simulate two multiphase stirred-tank reactors relevant to industrial processes such as slurry polymerization and fuel production. Gas-liquid simulations are first performed in a single-impeller stirred-tank reactor, studied experimentally by Ford, J. J., T. J. Heindel, T. C. Jensen, and J. B. Drake. 2008. “X-Ray Computed Tomography of a Gas-Sparged Stirred-Tank Reactor.” <em>Chemical Engineering Science</em> 63: 2075–85. Three impeller rotation speeds (200, 350 and 700 rpm) with three different bubble diameters (0.5, 1.5 and 2.5 mm) are investigated. Flow patterns compared qualitatively to those from experiments. Compared to the experimental data, the simulations are in relatively good agreement for gas holdup in the reactor. The second multiphase system is a multi-impeller stirred-tank reactor, studied experimentally by Shewale, S. D., and A. B. Pandit. 2006. “Studies in Multiple Impeller Agitated Gas-Liquid Contractors.” <em>Chemical Engineering Science</em> 61: 486–504. Gas-liquid simulations are performed at two impeller rotation speeds (3.75 and 5.08 RPS). The simulated flow patterns agree with published pictures from the experiments. Gas-liquid-solid simulations of the multi-impeller stirred-tank reactor are also carried out at impeller rotation speed 5.08 RPS. The addition of solid particles with a volume fraction characteristic of slurry reactors changes the flow pattern significantly. The bottom Rushton turbine becomes flooded, while the upper pitched-blade downflow turbines present a radial-pumping flow pattern instead of down-pumping. Nonetheless, the solid phase has a similar flow pattern to the liquid phase, indicating that the particles modify the effective density of the fluid.</p> | |
dc.description.comments | <p>This is a manuscript of an article published as Hu, Xiaofei, Aziz Dogan Ilgun, Alberto Passalacqua, Rodney O. Fox, Francesco Bertola, Miran Milosevic, and Frans Visscher. "CFD simulations of stirred-tank reactors for gas-liquid and gas-liquid-solid systems using OpenFOAM®." <em>International Journal of Chemical Reactor Engineering</em> (2021). DOI: <a href="https://doi.org/10.1515/ijcre-2019-0229" target="_blank">10.1515/ijcre-2019-0229</a>. The final publication is available at www.degruyter.com. Posted with permission.</p> | |
dc.format.mimetype | application/pdf | |
dc.identifier | archive/lib.dr.iastate.edu/cbe_pubs/455/ | |
dc.identifier.articleid | 1456 | |
dc.identifier.contextkey | 21827662 | |
dc.identifier.s3bucket | isulib-bepress-aws-west | |
dc.identifier.submissionpath | cbe_pubs/455 | |
dc.identifier.uri | https://dr.lib.iastate.edu/handle/20.500.12876/104647 | |
dc.language.iso | en | |
dc.source.bitstream | archive/lib.dr.iastate.edu/cbe_pubs/455/2021_FoxRodney_CFDsimulations.pdf|||Sat Jan 15 00:21:22 UTC 2022 | |
dc.source.uri | 10.1515/ijcre-2019-0229 | |
dc.subject.disciplines | Catalysis and Reaction Engineering | |
dc.subject.disciplines | Fluid Dynamics | |
dc.subject.disciplines | Polymer Science | |
dc.subject.keywords | gas-liquid flow | |
dc.subject.keywords | gas-liquid-solid flow | |
dc.subject.keywords | multi-fluid model | |
dc.subject.keywords | multiphase CFD simulations | |
dc.subject.keywords | multiple impellers | |
dc.subject.keywords | stirred-tank reactor | |
dc.title | CFD simulations of stirred-tank reactors for gas-liquid and gas-liquid-solid systems using OpenFOAM® | |
dc.type | article | |
dc.type.genre | article | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | 2d8a786d-7099-40f9-9487-4a277777e499 | |
relation.isAuthorOfPublication | 75da3185-b167-47f1-977f-b54aa85bd649 | |
relation.isOrgUnitOfPublication | 6d38ab0f-8cc2-4ad3-90b1-67a60c5a6f59 | |
relation.isOrgUnitOfPublication | 86545861-382c-4c15-8c52-eb8e9afe6b75 |
File
Original bundle
1 - 1 of 1
No Thumbnail Available
- Name:
- 2021_FoxRodney_CFDsimulations.pdf
- Size:
- 3.53 MB
- Format:
- Adobe Portable Document Format
- Description: