A scratch intersection model of material removal during Chemical Mechanical Planarization (CMP)

Thumbnail Image
Date
2005-08-01
Authors
Che, Wei
Guo, Yongjin
Chandra, Abhijit
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Authors
Person
Bastawros, Ashraf
Professor
Research Projects
Organizational Units
Organizational Unit
Aerospace Engineering

The Department of Aerospace Engineering seeks to instruct the design, analysis, testing, and operation of vehicles which operate in air, water, or space, including studies of aerodynamics, structure mechanics, propulsion, and the like.

History
The Department of Aerospace Engineering was organized as the Department of Aeronautical Engineering in 1942. Its name was changed to the Department of Aerospace Engineering in 1961. In 1990, the department absorbed the Department of Engineering Science and Mechanics and became the Department of Aerospace Engineering and Engineering Mechanics. In 2003 the name was changed back to the Department of Aerospace Engineering.

Dates of Existence
1942-present

Historical Names

  • Department of Aerospace Engineering and Engineering Mechanics (1990-2003)

Related Units

Organizational Unit
Mechanical Engineering
The Department of Mechanical Engineering at Iowa State University is where innovation thrives and the impossible is made possible. This is where your passion for problem-solving and hands-on learning can make a real difference in our world. Whether you’re helping improve the environment, creating safer automobiles, or advancing medical technologies, and athletic performance, the Department of Mechanical Engineering gives you the tools and talent to blaze your own trail to an amazing career.
Journal Issue
Is Version Of
Versions
Series
Abstract

A scratch intersection based material removal mechanism for CMP processes is proposed in this paper. The experimentally observed deformation pattern by SEM and the trends of the measured force profiles (Che et al., 2003) reveal that, for an isolated shallow scratch, the material is mainly plowed side-way along the track of the abrasive particle with no net material removal. However, it is observed that material is detached close to the intersection zone of two scratches. Motivated by this observation, it is speculated that the deformation mechanism changes from ploughing mode to shear-segmentation mode as the abrasive particle approaches the intersection of two scratches under small indentation depth for ductile metals. The proposed mechanistic material removal rate (MRR) model yields Preston constant similar to those observed experimentally for CMP processes. The proposed model also reveals that the nature of the slurry-pad interaction mechanism, and its associated force partitioning mechanism, is important for determining the variation of MRR with particle size and concentration. It is observed that under relatively soft pads, small particles and low particle concentration, the pad undergoes local deformation, yielding an increased MRR with increasing particle size and concentration. At the other extreme, the intact walls of the surface cells and the connecting cell walls between the surface pores deform globally, resembling a beam or a plate, and a decreasing trend in MRR is observed with increasing particle size and concentration. The predicted MRR trends are compared to existing experimental observations.

Comments

This article is from Journal of Manufacturing Science and Engineering 127 (2005): 545, doi: 10.1115/1.1949616. Posted with permission.

Description
Keywords
Citation
DOI
Copyright
Sat Jan 01 00:00:00 UTC 2005
Collections