Quantifying Attachment and Antibiotic Resistance of Escherichia coli from Conventional and Organic Swine Manure

Thumbnail Image
Date
2016-03-01
Authors
Soupir, Michelle
Jarboe, Laura
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Authors
Person
Jarboe, Laura
Professor
Person
Soupir, Michelle
Associate Dean
Research Projects
Organizational Units
Organizational Unit
Agricultural and Biosystems Engineering

Since 1905, the Department of Agricultural Engineering, now the Department of Agricultural and Biosystems Engineering (ABE), has been a leader in providing engineering solutions to agricultural problems in the United States and the world. The department’s original mission was to mechanize agriculture. That mission has evolved to encompass a global view of the entire food production system–the wise management of natural resources in the production, processing, storage, handling, and use of food fiber and other biological products.

History
In 1905 Agricultural Engineering was recognized as a subdivision of the Department of Agronomy, and in 1907 it was recognized as a unique department. It was renamed the Department of Agricultural and Biosystems Engineering in 1990. The department merged with the Department of Industrial Education and Technology in 2004.

Dates of Existence
1905–present

Historical Names

  • Department of Agricultural Engineering (1907–1990)

Related Units

Journal Issue
Is Version Of
Versions
Series
Department
Agricultural and Biosystems Engineering
Abstract

Broad-spectrum antibiotics are often administered to swine, contributing to the occurrence of antibiotic-resistant bacteria in their manure. During land application, the bacteria in swine manure preferentially attach to particles in the soil, affecting their transport in overland flow. However, a quantitative understanding of these attachment mechanisms is lacking, and their relationship to antibiotic resistance is unknown. The objective of this study is to examine the relationships between antibiotic resistance and attachment to very fine silica sand inEscherichia coli collected from swine manure. A total of 556 isolates were collected from six farms, two organic and four conventional (antibiotics fed prophylactically). Antibiotic resistance was quantified using 13 antibiotics at three minimum inhibitory concentrations: resistant, intermediate, and susceptible. Of the 556 isolates used in the antibiotic resistance assays, 491 were subjected to an attachment assay. Results show that E. coli isolates from conventional systems were significantly more resistant to amoxicillin, ampicillin, chlortetracycline, erythromycin, kanamycin, neomycin, streptomycin, tetracycline, and tylosin (P < 0.001). Results also indicate that E. coli isolated from conventional systems attached to very fine silica sand at significantly higher levels than those from organic systems (P < 0.001). Statistical analysis showed that a significant relationship did not exist between antibiotic resistance levels and attachment in E. coli from conventional systems but did for organic systems (P < 0.001). Better quantification of these relationships is critical to understanding the behavior of E. coli in the environment and preventing exposure of human populations to antibiotic-resistant bacteria.

Comments

This article is from Journal of Environmental Quality 45 (2016): 609–617, doi:10.2134/jeq2015.05.0245.

Description
Keywords
Citation
DOI
Copyright
Collections