Effect of Temperature Sensor Numbers and Placement on Aeration Cooling of a Stored Grain Mass Using a 3D Finite Element Model

Thumbnail Image
Date
2021-03-10
Authors
Plumier, Benjamin
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Authors
Person
Maier, Dirk
Professor
Research Projects
Organizational Units
Organizational Unit
Organizational Unit
Agricultural and Biosystems Engineering

Since 1905, the Department of Agricultural Engineering, now the Department of Agricultural and Biosystems Engineering (ABE), has been a leader in providing engineering solutions to agricultural problems in the United States and the world. The department’s original mission was to mechanize agriculture. That mission has evolved to encompass a global view of the entire food production system–the wise management of natural resources in the production, processing, storage, handling, and use of food fiber and other biological products.

History
In 1905 Agricultural Engineering was recognized as a subdivision of the Department of Agronomy, and in 1907 it was recognized as a unique department. It was renamed the Department of Agricultural and Biosystems Engineering in 1990. The department merged with the Department of Industrial Education and Technology in 2004.

Dates of Existence
1905–present

Historical Names

  • Department of Agricultural Engineering (1907–1990)

Related Units

Journal Issue
Is Version Of
Versions
Series
Abstract

Grain stored in silos in the United States of America is generally cooled with an aeration system to limit mold spoilage and insect infestation. Monitoring efficacy of aeration and real-time conditions of stored grain is generally done using temperature cables with fixed-spaced sensor locations that are hung from the roof of the silo. Numerous placement options exist in terms of the number of cables and their positions. However, little investigation has been done into the effects of cable placement on aeration system operation decisions and real-time monitoring of stored grain conditions. For a one-year period, the temperatures predicted by sensors in three recommended temperature cable configurations were evaluated for conditions in Ames, IA, USA. The average temperatures of each of the cable sensor configurations were lower than the average temperatures of the entire silo, with as much as an 11.4 °C difference. When sensor locations were used as inputs for aeration control, all cable sensor configurations predicted similar average temperatures. However, the temperature averages varied by as much as 3.6 °C depending on the temperature cable distribution chosen. Results demonstrated that temperature cables near the center or near the edges of the silos produce results that are not representative of the grain mass, resulting in less efficient aerations. Simulations were also conducted with randomized horizontal “wireless” sensor locations at fixed grain depths. The average temperatures were similar, but an increase in the number of sensors reduced variability between simulated storage years as the number of randomized sensors increased.

Comments

This article is published as Plumier, Benjamin, and Dirk Maier. "Effect of temperature sensor numbers and placement on aeration cooling of a stored grain mass using a 3D Finite Element Model." Agriculture 11, no. 3 (2021): 231. DOI: 10.3390/agriculture11030231.

Description
Keywords
Citation
DOI
Copyright
Collections