Superconductivity in alkaline earth metal doped boron hydrides

Thumbnail Image
Date
2021-03-08
Authors
Yang, Wen-Hua
Lu, Wen-Cai
Li, Shan-Dong
Xue, Xu-Yan
Qin, Wei
Ho, Kai-Ming
Wang, Cai-Zhuang
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract

Effects of alkaline earth metal atoms doping in boron hydrides at high pressure are investigated by first-principles calculations. The calculated results showed that doping with Mg, Ca, Ba, and Sr in B8H16 at 50 GPa is thermodynamically favorable and dynamically stable. The doping changes the B8H16 from a semiconductor to a metal with substantial electronic density-of-state around the Fermi level. The superconductivity of the alkaline earth metal doped B8H16 is studied based on electron-phonon coupling mechanism. The calculated critical superconducting transition temperatures (Tc) range from 10 to 25 K at 50 GPa upon doping. These results suggest that doping metal atoms in boron hydrides is an efficient way in designing superconducting materials.

Series Number
Journal Issue
Is Version Of
Versions
Series
IS-J 10440
Academic or Administrative Unit
Type
article
Comments
Rights Statement
Copyright
Funding
Subject Categories
DOI
Supplemental Resources
Collections