A multienvironment conditional probability density function model for turbulent reacting flows

Thumbnail Image
Raman, Venkatramanan
Major Professor
Committee Member
Journal Title
Journal ISSN
Volume Title
Fox, Rodney
Distinguished Professor
Research Projects
Organizational Units
Organizational Unit
Chemical and Biological Engineering

The function of the Department of Chemical and Biological Engineering has been to prepare students for the study and application of chemistry in industry. This focus has included preparation for employment in various industries as well as the development, design, and operation of equipment and processes within industry.Through the CBE Department, Iowa State University is nationally recognized for its initiatives in bioinformatics, biomaterials, bioproducts, metabolic/tissue engineering, multiphase computational fluid dynamics, advanced polymeric materials and nanostructured materials.

The Department of Chemical Engineering was founded in 1913 under the Department of Physics and Illuminating Engineering. From 1915 to 1931 it was jointly administered by the Divisions of Industrial Science and Engineering, and from 1931 onward it has been under the Division/College of Engineering. In 1928 it merged with Mining Engineering, and from 1973–1979 it merged with Nuclear Engineering. It became Chemical and Biological Engineering in 2005.

Dates of Existence
1913 - present

Historical Names

  • Department of Chemical Engineering (1913–1928)
  • Department of Chemical and Mining Engineering (1928–1957)
  • Department of Chemical Engineering (1957–1973, 1979–2005)
    • Department of Chemical and Biological Engineering (2005–present)

    Related Units

Journal Issue
Is Version Of

The multienvironment conditional probability density function (MECPDF) model was first proposed by Fox [Computational Models for Turbulent Reacting Flows (Cambridge University Press, Cambridge, 2003)] as a simple extension of multienvironment probability density function models for turbulent reacting flows. Like the conditional moment closure (CMC) and the laminar flamelet model (LFM), the MECPDF model describes the reacting scalars conditioned on the value of the mixture fraction. However, unlike CMC and LFM, the new model provides a consistent description of conditional fluctuations in both the scalar dissipation rate and the reacting scalars, and hence can be used to model partial extinction and reignition in homogeneous turbulent reacting flows. In this work, a general derivation of the MECPDF model is presented for a single reaction-progress variable using the direct quadrature method of moments. Extensions of the model to multiple reaction-progress variables and conditioning on the mixture-fraction vector are also discussed. After deriving the model, the closure assumptions are validated using direct simulations for pure diffusion of two randomly distributed, initially correlated scalar fields. Two homogeneous applications are then considered: nonreactive mixing starting from nontrivial initial conditions, and reactive mixing with partial extinction and reignition.


This article is from Physics of Fluids 16 (2004): 4551-4565, doi: 10.1063/1.1807771. Posted with permission.

Subject Categories
Thu Jan 01 00:00:00 UTC 2004