Detection of Volatile Compounds Emitted from Nasal Secretions and Serum: Towards Non-Invasive Identification of Diseased Cattle Biomarkers

Thumbnail Image
Date
2018-03-12
Authors
Koziel, Jacek
Engelken, Terry
Funk, Jenna
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Authors
Person
Maurer, Devin
Research Associate II/Lab Manager
Person
Koziel, Jacek
Professor Emeritus
Research Projects
Organizational Units
Organizational Unit
Civil, Construction and Environmental Engineering

The Department of Civil, Construction, and Environmental Engineering seeks to apply knowledge of the laws, forces, and materials of nature to the construction, planning, design, and maintenance of public and private facilities. The Civil Engineering option focuses on transportation systems, bridges, roads, water systems and dams, pollution control, etc. The Construction Engineering option focuses on construction project engineering, design, management, etc.

History
The Department of Civil Engineering was founded in 1889. In 1987 it changed its name to the Department of Civil and Construction Engineering. In 2003 it changed its name to the Department of Civil, Construction and Environmental Engineering.

Dates of Existence
1889-present

Historical Names

  • Department of Civil Engineering (1889-1987)
  • Department of Civil and Construction Engineering (1987-2003)
  • Department of Civil, Construction and Environmental Engineering (2003–present)

Related Units

Organizational Unit
Veterinary Diagnostic and Production Animal Medicine
The mission of VDPAM is to educate current and future food animal veterinarians, population medicine scientists and stakeholders by increasing our understanding of issues that impact the health, productivity and well-being of food and fiber producing animals; developing innovative solutions for animal health and food safety; and providing the highest quality, most comprehensive clinical practice and diagnostic services. Our department is made up of highly trained specialists who span a wide range of veterinary disciplines and species interests. We have faculty of all ranks with expertise in diagnostics, medicine, surgery, pathology, microbiology, epidemiology, public health, and production medicine. Most have earned certification from specialty boards. Dozens of additional scientists and laboratory technicians support the research and service components of our department.
Organizational Unit
Agricultural and Biosystems Engineering

Since 1905, the Department of Agricultural Engineering, now the Department of Agricultural and Biosystems Engineering (ABE), has been a leader in providing engineering solutions to agricultural problems in the United States and the world. The department’s original mission was to mechanize agriculture. That mission has evolved to encompass a global view of the entire food production system–the wise management of natural resources in the production, processing, storage, handling, and use of food fiber and other biological products.

History
In 1905 Agricultural Engineering was recognized as a subdivision of the Department of Agronomy, and in 1907 it was recognized as a unique department. It was renamed the Department of Agricultural and Biosystems Engineering in 1990. The department merged with the Department of Industrial Education and Technology in 2004.

Dates of Existence
1905–present

Historical Names

  • Department of Agricultural Engineering (1907–1990)

Related Units

Journal Issue
Is Version Of
Versions
Series
Department
Civil, Construction and Environmental EngineeringVeterinary Diagnostic and Production Animal MedicineAgricultural and Biosystems Engineering
Abstract

Non-invasive diagnostics and finding biomarkers of disease in humans have been a very active research area. Some of the analytical technologies used for finding biomarkers of human disease are finding their use in livestock. Non-invasive sample collection from diseased cattle using breath and headspace of fecal samples have been reported. In this work, we explore the use of volatile organic compounds (VOCs) emitted from bovine nasal secretions and serum for finding biomarkers for bovine respiratory disease (BRD). One hundred nasal swabs and 100 serum samples (n = 50 for both ‘sick’ and ‘healthy’) were collected at the time of treatment for suspected BRD. Solid-phase microextraction (SPME) was used to collect headspace samples that were analyzed using gas chromatography-mass spectrometry (GC-MS). It was possible to separate sick cattle using non-invasive analyses of nasal swabs and also serum samples by analyzing and comparing volatiles emitted from each group of samples. Four volatile compounds were found to be statistically significantly different between ‘sick’ and ‘normal’ cattle nasal swabs samples. Five volatile compounds were found to be significantly different between ‘sick’ and ‘normal’ cattle serum samples, with phenol being the common marker. Future studies are warranted to improve the extraction efficiency targeting VOCs preliminarily identified in this study. These findings bring us closer to the long-term goal of real-time, animal-side detection and separation of sick cattle.

Comments

This article is published as Maurer, Devin L., Jacek A. Koziel, Terry J. Engelken, Vickie L. Cooper, and Jenna L. Funk. "Detection of Volatile Compounds Emitted from Nasal Secretions and Serum: Towards Non-Invasive Identification of Diseased Cattle Biomarkers." Separations 5, no. 1 (2018): 18. DOI: 10.3390/separations5010018. Posted with permission.

Description
Keywords
Citation
DOI
Copyright
Mon Jan 01 00:00:00 UTC 2018
Collections