Sculpted Surface Model Synthesis Based on Functional Design Constraints

Thumbnail Image
Date
1993-09-01
Authors
Theruvakattil, Philip
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract

A technique if presented for the synthesis of sculptured surface models subject to several functional design constraints. A design environment is specified as a collection of polyhedral models which represent components in the vicinity of the design surface, or regions which the surface should avoid. The primary functional constraint is formulated as a proximity penalty function such that the design surface is induced to avoid a tolerance envelope around each component. In addition, a constraint based on surface area is formulated to counteract the expansion effect of the proximity constraint. Secondary design constraints are formulated to maintain consistent surface topology, and exploit part symmetry. Surface synthesis is thus formulated as an optimization problem and solved via simulated annealing. Several example applications are presented to demonstrate the capabilities of the technique.

Series Number
Journal Issue
Is Version Of
Versions
Series
Academic or Administrative Unit
Type
article
Comments

This is a conference proceeding from 19th Design Automation Conference 2 (1993): 515. Posted with permission.

Rights Statement
Copyright
Fri Jan 01 00:00:00 UTC 1993
Funding
DOI
Supplemental Resources
Source