Rapid Prototyping of Reconfigurable Microfluidic Channels in Undercooled Metal Particle-Elastomer Composites

Thumbnail Image
Date
2019-03-13
Authors
Chang, Boyce
Fratzl, Mario
Boyer, Andrea
Martin, Andrew
Ahrenholtz, Henry
De Moraes, Isabelle
Bloch, Jean-Francis
Dempsey, Nora
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract

Conventional fabrication of microfluidic channels/devices are faced with challenges such as single use channels and/or significant time consumption. We propose a flexible platform for fabricating microfluidic channels simply through indentation on a smart composite—the so-called ST3R (Stiffness tuning through thermodynamic relaxation) composite. The application of ST3R composite allows rapid fabrication of microfluidic channels by hand or with a prefabricated stamp, and precise prototyping of complex designs using a 2D plotter. Indenter geometry, applied stress, filler loading, and number of repeated indentations affect channel dimensions and/or shape. These channels further exhibit; i) Substantial improvement against swelling by organic solvent, in part due to the high modulus of the solidified metal network. ii) Channel reconfigurability by heating the solidified undercooled metals. ST3R composite slabs have the potential to serve as microfluidic ‘breadboards’, from which complex channels can be integrated in a flexible manner.

Series Number
Journal Issue
Is Version Of
Versions
Series
Type
article
Comments

This document is the unedited Author’s version of a Submitted Work that was subsequently accepted for publication in Industrial & Engineering Chemistry Research, copyright © American Chemical Society after peer review. To access the final edited and published work see DOI: 10.1021/acs.iecr.8b06441.

Rights Statement
Copyright
Tue Jan 01 00:00:00 UTC 2019
Funding
DOI
Supplemental Resources
Collections