Phase-composition dependent domain responses in (K0.5Na0.5)NbO3-based piezoceramics
Date
Authors
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
Lead-free (K0.5Na0.5)NbO3-based (KNN) piezoceramics featuring a polymorphic phase boundary (PPB) between the orthorhombic and tetragonal phases at room temperature are reported to possess high piezoelectric properties but with inferior cycling stability, while the ceramics with a single tetragonal phase show improved cycling stability but with lower piezoelectric coefficients. In this work, electric biasing in-situ transmission electron microscopy (TEM) study is conducted on two KNN-based compositions, which are respectively at and off PPB. Our observations reveal the distinctive domain responses in these two ceramics under cyclic fields. The higher domain wall density in the poled KNN at PPB contributes to the high piezoelectric properties. Upon cycling, however, a new microstructure feature, “domain intersection”, is directly observed in this PPB composition. In comparison, the off-PPB KNN ceramic develops large domains during poling, which experience much less extent of disruption during cycling. Our comparative study provides the basis for understanding the relation between phase composition and piezoelectric performance.
Series Number
Journal Issue
Is Version Of
Versions
Series
Academic or Administrative Unit
Type
Comments
This is a manuscript of an article published as Fan, Zhongming, Shujun Zhang, and Xiaoli Tan. "Phase-composition dependent domain responses in (K0. 5Na0. 5) NbO3-based piezoceramics." Journal of the European Ceramic Society (2019). DOI: 10.1016/j.jeurceramsoc.2019.11.046. Posted with permission.