Sculptured surface synthesis based on functional design constraints

Date
1996-04-23
Authors
Oliver, James
Oliver, James
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Altmetrics
Authors
Research Projects
Organizational Units
Journal Issue
Series
Department
Iowa State University Research Foundation, Inc.
Abstract

A technique is presented for the synthesis of sculptured surface models subject to several functional design constraints. A design environment is specified as a collection of polyhedral models which represent components in the vicinity of the design surface, or regions which the surface should avoid. The primary functional constraint is formulated as a proximity penalty function such that the design surface is induced to avoid a tolerance envelope around each component. In addition, a constraint based on surface area is formulated to counteract the expansion effect of the proximity constraint. Secondary design constraints are formulated to maintain consistent surface topology, and exploit part symmetry. Surface synthesis is thus formulated as an optimization problem and solved via simulated annealing. Several example applications are presented to demonstrate the capabilities of the technique.

Comments
Description
Keywords
Citation
DOI
Source
Collections