Stability of Single-Parent Gene Expression Complementation in Maize Hybrids upon Water Deficit Stress

Thumbnail Image
Date
2017-02-01
Authors
Marcon, Caroline
Paschold, Anja
Malik, Waqas Ahmed
Lithio, Andrew
Baldauf, Jutta
Altrogge, Lena
Opitz, Nina
Lanz, Christa
Schoof, Heiko
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Authors
Person
Nettleton, Dan
Department Chair and Distinguished Professor
Research Projects
Organizational Units
Organizational Unit
Statistics
As leaders in statistical research, collaboration, and education, the Department of Statistics at Iowa State University offers students an education like no other. We are committed to our mission of developing and applying statistical methods, and proud of our award-winning students and faculty.
Journal Issue
Is Version Of
Versions
Series
Department
Statistics
Abstract

Heterosis is the superior performance of F1 hybrids compared with their homozygous, genetically distinct parents. In this study, we monitored the transcriptomic divergence of the maize (Zea mays) inbred lines B73 and Mo17 and their reciprocal F1 hybrid progeny in primary roots under control and water deficit conditions simulated by polyethylene glycol treatment. Single-parent expression (SPE) of genes is an extreme instance of gene expression complementation, in which genes are active in only one of two parents but are expressed in both reciprocal hybrids. In this study, 1,997 genes only expressed in B73 and 2,024 genes only expressed in Mo17 displayed SPE complementation under control and water deficit conditions. As a consequence, the number of active genes in hybrids exceeded the number of active genes in the parental inbred lines significantly independent of treatment. SPE patterns were substantially more stable to expression changes by water deficit treatment than other genotype-specific expression profiles. While, on average, 75% of all SPEpatterns were not altered in response to polyethylene glycol treatment, only 17% of the remaining genotype-specific expression patterns were not changed by water deficit. Nonsyntenic genes that lack syntenic orthologs in other grass species, and thus evolved late in the grass lineage, were significantly overrepresented among SPE genes. Hence, the significant overrepresentation of nonsyntenic genes among SPE patterns and their stability under water limitation might suggest a function of these genes during the early developmental manifestation of heterosis under fluctuating environmental conditions in hybrid progeny of the inbred lines B73 and Mo17.

Comments

This article is published as Marcon, Caroline, Anja Paschold, Waqas Ahmed Malik, Andrew Lithio, Jutta A. Baldauf, Lena Altrogge, Nina Opitz et al. "Stability of single-parent gene expression complementation in maize hybrids upon water deficit stress." Plant physiology 173, no. 2 (2017): 1247-1257. doi: 10.1104/pp.16.01045. Posted with permission.

Description
Keywords
Citation
DOI
Copyright
Sun Jan 01 00:00:00 UTC 2017
Collections