Effect of porcine circovirus type 2a or 2b on infection kinetics and pathogenicity of two genetically divergent strains of porcine reproductive and respiratory syndrome virus in the conventional pig model

Thumbnail Image
Date
2012-07-01
Authors
Opriessnig, Tanja
Gauger, Phillip
Faaberg, Kay
Shen, Huigang
Beach, Nathan
Meng, Xiang-Jin
Wang, Chong
Halbur, Patrick
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Authors
Person
Research Projects
Organizational Units
Organizational Unit
Statistics
As leaders in statistical research, collaboration, and education, the Department of Statistics at Iowa State University offers students an education like no other. We are committed to our mission of developing and applying statistical methods, and proud of our award-winning students and faculty.
Organizational Unit
Veterinary Diagnostic and Production Animal Medicine
The mission of VDPAM is to educate current and future food animal veterinarians, population medicine scientists and stakeholders by increasing our understanding of issues that impact the health, productivity and well-being of food and fiber producing animals; developing innovative solutions for animal health and food safety; and providing the highest quality, most comprehensive clinical practice and diagnostic services. Our department is made up of highly trained specialists who span a wide range of veterinary disciplines and species interests. We have faculty of all ranks with expertise in diagnostics, medicine, surgery, pathology, microbiology, epidemiology, public health, and production medicine. Most have earned certification from specialty boards. Dozens of additional scientists and laboratory technicians support the research and service components of our department.
Journal Issue
Is Version Of
Versions
Series
Department
StatisticsVeterinary Diagnostic and Production Animal Medicine
Abstract

To determine differences in infection kinetics of two temporally and genetically different type 2 porcine reproductive and respiratory syndrome virus (PRRSV) isolates in vivo with and without concurrent porcine circovirus (PCV) type 2a or 2b infection, 62 pigs were randomly assigned to one of seven groups: negative controls (n = 8); pigs coinfected with a 1992 PRRSV strain (VR-2385) and PCV2a (CoI-92-2a; n = 9), pigs coinfected with VR-2385 and PCV2b (CoI-92-2b; n = 9), pigs coinfected with a 2006 PRRSV strain (NC16845b) and PCV2a (CoI-06-2a; n = 9), pigs coinfected with NC16845b and PCV2b (CoI-06-2b; n = 9), pigs infected with VR-2385 (n = 9), and pigs infected with NC16845b (n = 9). Blood samples were collected before inoculation and at day post-inoculation (dpi) 3, 6, 9 and 12 and tested for the presence of PRRSV antibody and RNA, PCV2 antibody and DNA, complete blood counts, and interferon gamma (IFN-γ) levels. Regardless of concurrent PCV2 infection, VR-2385 initially replicated at higher levels and reached peak replication levels at dpi 6. Pigs infected with VR-2385 had significantly higher amounts of viral RNA in serum on both dpi 3 and dpi 6, compared to pigs infected with NC16845b. The peak of NC16845b virus replication occurred between dpi 9 and dpi 12 and was associated with a delayed anti-PRRSV antibody response in these pigs. PCV2 coinfection resulted in significantly more severe macroscopic and microscopic lung lesions and a stronger anti-PRRSV IgG response compared to pigs infected with PRRSV alone. This work further emphasizes in vivo replication differences among PRRSV strains and the importance of coinfecting pathogens.

Comments

This article is from Veterinary Microbiology 158 (2012); 69, doi: 10.1016/j.vetmic.2012.02.010.

Description
Keywords
Citation
DOI
Copyright
Collections