Combining Kinematic and Visual Data to Implement Various Twin Convolutional Neural Networks to Classify Writers

Thumbnail Image
Date
2023-02
Authors
Lim, Andrew
Ommen, Danica
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Copyright 2023, The Authors
Authors
Research Projects
Organizational Units
Organizational Unit
Center for Statistics and Applications in Forensic Evidence
The Center for Statistics and Applications in Forensic Evidence (CSAFE) carries out research on the scientific foundations of forensic methods, develops novel statistical methods and transfers knowledge and technological innovations to the forensic science community. We collaborate with more than 80 researchers and across six universities to drive solutions to support our forensic community partners with accessible tools, open-source databases and educational opportunities.
Journal Issue
Is Version Of
Versions
Series
Abstract
Identifying the source of handwriting is an important application in the field of forensic science that addresses questioned document evidence found in criminal cases and civil litigation. It is difficult, given the idiosyncrasies of a person’s handwriting, to recognize the exact writer of a piece of handwriting based only on its physical properties. Even more so is trying to classify a writer without any prior database containing handwriting characteristics of such writer. Data sets containing handwriting samples from different sources are used to investigate how well a convolutional neural network can classify writers from unseen sources. Comparisons between scenarios modeled after real-world situations with varying degrees of complexity, which are adjusted by whether and from which source the samples from the suspects have been collected to train the model, are made to examine the extent to which twin convolutional neural networks can successfully classify similar and different writers. This presentation primarily aims to compare data processing and modeling methods to improve classification on whether two pieces of handwriting are from the same or different writers, in the context where every potential writer has never been seen before. The structure of a twin convolutional neural network allows such comparisons between two images by passing them through identical convolutional neural networks and defining a metric that merges their outputted feature vectors to obtain a similarity score. As model limitations in this presentation are driven by memory and available data, various pre-processing and sampling methods are compared to maximize classification accuracy. On this optimized data set, a custom model that is developed for this analysis is shown to outperform various top-performing architectures in image classification problems with a classification accuracy of 85.5 percent on a test set with similar structure to the training set and 82.8 percent on a data set collected from a different database. Results show that as long as a large-enough number of samples are available to train the model, comparisons between the writers of questioned documents can be classified with over 80 percent accuracy.
Comments
The following poster was presented at the 75th Anniversary Conference of the American Academy of Forensic Sciences, Orlando, Florida, February 13-18, 2023. Posted with permission of CSAFE.
Description
Keywords
Citation
DOI
Source
Copyright