Harness Organoid Models for Virological Studies in Animals: A Cross-Species Perspective

Thumbnail Image
Date
2021-09-16
Authors
Sang, Yongming
Miller, Laura C.
Nelli, Rahul
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Frontiers Media S.A.
Authors
Person
Giménez-Lirola, Luis
Associate Professor
Research Projects
Organizational Units
Organizational Unit
Veterinary Diagnostic and Production Animal Medicine
The mission of VDPAM is to educate current and future food animal veterinarians, population medicine scientists and stakeholders by increasing our understanding of issues that impact the health, productivity and well-being of food and fiber producing animals; developing innovative solutions for animal health and food safety; and providing the highest quality, most comprehensive clinical practice and diagnostic services. Our department is made up of highly trained specialists who span a wide range of veterinary disciplines and species interests. We have faculty of all ranks with expertise in diagnostics, medicine, surgery, pathology, microbiology, epidemiology, public health, and production medicine. Most have earned certification from specialty boards. Dozens of additional scientists and laboratory technicians support the research and service components of our department.
Journal Issue
Is Version Of
Versions
Series
Department
Veterinary Diagnostic and Production Animal Medicine
Abstract
Animal models and cell culture in vitro are primarily used in virus and antiviral immune research. Whereas the limitation of these models to recapitulate the viral pathogenesis in humans has been made well aware, it is imperative to introduce more efficient systems to validate emerging viruses in both domestic and wild animals. Organoids ascribe to representative miniatures of organs (i.e., mini-organs), which are derived from three-dimensional culture of stem cells under respective differential conditions mimicking endogenous organogenetic niches. Organoids have broadened virological studies in the human context, particularly in recent uses for COVID19 research. This review examines the status and potential for cross-species applied organotypic culture in validating emerging animal, particularly zoonotic, viruses in domestic and wild animals.
Comments
This article is published as Sang, Yongming, Laura C. Miller, Rahul K. Nelli, and Luis Gabriel Giménez-Lirola. "Harness Organoid Models for Virological Studies in Animals: A Cross-Species Perspective." Frontiers in Microbiology (2021): 2738. DOI: 10.3389/fmicb.2021.725074. Works produced by employees of the U.S. Government as part of their official duties are not copyrighted within the U.S. The content of this document is not copyrighted.
Description
Keywords
Citation
DOI
Copyright
Collections