Thermal Unequilibrium of PdSn Intermetallic Nanocatalysts: From In Situ Tailored Synthesis to Unexpected Hydrogenation Selectivity

Thumbnail Image
Date
2021-06-10
Authors
Chen, Minda
Yan, Yu
Gebre, Mebatsion
Ordonez, Claudio
Liu, Fudong
Qi, Long
Lamkins, Andrew
Jing, Dapeng
Dolge, Kevin
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Authors
Person
Huang, Wenyu
Professor
Research Projects
Organizational Units
Organizational Unit
Organizational Unit
Journal Issue
Is Version Of
Versions
Series
Department
Ames National LaboratoryChemistry
Abstract

Effective control on chemoselectivity in the catalytic hydrogenation of C=O over C=C bonds is uncommon with Pd-based catalysts because of the favored adsorption of C=C bonds on Pd surface. Here we report a unique orthorhombic PdSn intermetallic phase with unprecedented chemoselectivity toward C=O hydrogenation. We observed the formation and metastability of this PdSn phase in situ. During a natural cooling process, the PdSn nanoparticles readily revert to the favored Pd3Sn2 phase. Instead, using a thermal quenching method, we prepared a pure-phase PdSn nanocatalyst. PdSn shows an >96 % selectivity toward hydrogenating C=O bonds of various α,β-unsaturated aldehydes, highest in reported Pd-based catalysts. Further study suggests that efficient quenching prevents the reversion from PdSn- to Pd3Sn2-structured surface, the key to the desired catalytic performance. Density functional theory calculations and analysis of reaction kinetics provide an explanation for the observed high selectivity.

Comments
Description
Keywords
Citation
DOI
Copyright
Collections