Use of the Dual-Probe Heat-Pulse Technique to Monitor Soil Water Content in the Vadose Zone

Thumbnail Image
Ochsner, Tyson
Horton, Robert
Ren, Tusheng
Major Professor
Committee Member
Journal Title
Journal ISSN
Volume Title
Horton, Robert
Distinguished Professor
Research Projects
Organizational Units
Organizational Unit

The Department of Agronomy seeks to teach the study of the farm-field, its crops, and its science and management. It originally consisted of three sub-departments to do this: Soils, Farm-Crops, and Agricultural Engineering (which became its own department in 1907). Today, the department teaches crop sciences and breeding, soil sciences, meteorology, agroecology, and biotechnology.

The Department of Agronomy was formed in 1902. From 1917 to 1935 it was known as the Department of Farm Crops and Soils.

Dates of Existence

Historical Names

  • Department of Farm Crops and Soils (1917–1935)

Related Units

Journal Issue
Is Version Of

The dual-probe heat-pulse (DPHP) technique is emerging as a useful technique for measuring soil volumetric water content (θ). However, few published data are available regarding the performance of the DPHP technique under field conditions. The objective of this study is to evaluate the effectiveness of the DPHP technique for measuring θ under field conditions. We used 24 DPHP sensors to monitor θ in a soybean [Glycine max (L.) Merr.] field during the 2001 and 2002 growing seasons. The DPHP sensors demonstrated durability in field conditions and clear sensitivity to temporal and spatial variations of θ at the scale of measurement. The mean θ measured by the DPHP sensors (θDPHP) was on average 0.040 m3 m−3 larger than the mean θ measured by soil sampling (θSS). The response of the DPHP sensors was linear. Regressions of θDPHP vs. θSS yielded r 2 values of 0.949 and 0.843 at depths of 7.5 and 37.5 cm. The DPHP technique showed good resolution with RMSE values for the regression of 0.009 and 0.011 m3 m−3 at the two measurement depths. The slopes of the regressions were 0.75 rather than 1.0. Errors in θSS are a likely cause of this low slope. We shifted all the θ values for each sensor up or down by a constant value to make the first θ measurement from each sensor equal θ determined from soil sampling near that sensor at the time of installation. This simple matching point procedure improved the accuracy of the DPHP technique, resulting in a −0.024 m3 m−3 average difference between θDPHP and θSS Also, the matching point procedure markedly reduced the variability between sensors, reducing the average SD from 0.063 to 0.026 m3 m−3 This procedure requires no additional soil sampling and is recommended for field applications of the DPHP technique.


This article is published as Ochsner, Tyson E., Robert Horton, and Tusheng Ren. "Use of the dual-probe heat-pulse technique to monitor soil water content in the vadose zone." Vadose Zone Journal 2, no. 4 (2003): 572-579. doi: 10.2136/vzj2003.5720. Posted with permission.