Temperature dependence of metal film growth via low‐energy electron diffraction intensity oscillations: Pt/Pd(100)

Thumbnail Image
Flynn, D.
Thiel, P.
Major Professor
Committee Member
Journal Title
Journal ISSN
Volume Title
Evans, James
Research Projects
Organizational Units
Organizational Unit
Ames National Laboratory

Ames National Laboratory is a government-owned, contractor-operated national laboratory of the U.S. Department of Energy (DOE), operated by and located on the campus of Iowa State University in Ames, Iowa.

For more than 70 years, the Ames National Laboratory has successfully partnered with Iowa State University, and is unique among the 17 DOE laboratories in that it is physically located on the campus of a major research university. Many of the scientists and administrators at the Laboratory also hold faculty positions at the University and the Laboratory has access to both undergraduate and graduate student talent.

Organizational Unit
Physics and Astronomy
Physics and astronomy are basic natural sciences which attempt to describe and provide an understanding of both our world and our universe. Physics serves as the underpinning of many different disciplines including the other natural sciences and technological areas.
Organizational Unit
Welcome to the exciting world of mathematics at Iowa State University. From cracking codes to modeling the spread of diseases, our program offers something for everyone. With a wide range of courses and research opportunities, you will have the chance to delve deep into the world of mathematics and discover your own unique talents and interests. Whether you dream of working for a top tech company, teaching at a prestigious university, or pursuing cutting-edge research, join us and discover the limitless potential of mathematics at Iowa State University!
Journal Issue
Is Version Of

A commercial, conventional low‐energy electron diffraction apparatus is used to monitor Bragg intensity oscillations during the growth of Pt on Pd(100). The effect of substrate temperature between 80 and 400 K is investigated. Between 80 and 300 K, two to three Bragg oscillations are observed. The oscillation amplitude damps out quickly as film coverage increases at fixed temperature, but damp out less quickly at the higher substrate temperatures. Above ∼350 K, reconstruction of the Pt overlayer interferes with the oscillations. These data indicate that a kinetic barrier, most probably the barrier to surface diffusion,inhibits the system from achieving macroscopic equilibrium, and that the true equilibrium growth mode for this system is layer‐by‐layer. A new, analytical procedure is used to determine the coverage distribution within the layers from the Bragg intensities during growth. Bragg oscillations are predicted to occur at low substrate temperatures where surface diffusion is minimal and deposition is essentially random, but restricted to the fourfold hollow adsorption sites.


This article is published as Flynn, D. K., J. W. Evans, and P. A. Thiel. "Temperature dependence of metal film growth via low‐energy electron diffraction intensity oscillations: Pt/Pd (100)." Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films 7, no. 3 (1989): 2162-2166, doi:10.1116/1.575950. Posted with permission.

Sun Jan 01 00:00:00 UTC 1989