23Na nuclear magnetic resonance study of yNa2S+(1 − y)[xSiS2+(1 − x)PS5/2] glassy solid electrolytes

Thumbnail Image
Shastri, Ananda
Watson, Deborah
Ding, Qing-Ping
Furukawa, Yuji
Major Professor
Committee Member
Journal Title
Journal ISSN
Volume Title
Martin, Steve
Distinguished Professor
Research Projects
Organizational Units
Organizational Unit
Ames National Laboratory

Ames National Laboratory is a government-owned, contractor-operated national laboratory of the U.S. Department of Energy (DOE), operated by and located on the campus of Iowa State University in Ames, Iowa.

For more than 70 years, the Ames National Laboratory has successfully partnered with Iowa State University, and is unique among the 17 DOE laboratories in that it is physically located on the campus of a major research university. Many of the scientists and administrators at the Laboratory also hold faculty positions at the University and the Laboratory has access to both undergraduate and graduate student talent.

Organizational Unit
Physics and Astronomy
Physics and astronomy are basic natural sciences which attempt to describe and provide an understanding of both our world and our universe. Physics serves as the underpinning of many different disciplines including the other natural sciences and technological areas.
Organizational Unit
Materials Science and Engineering

The Department of Materials Science and Engineering teaches the composition, microstructure, and processing of materials as well as their properties, uses, and performance. These fields of research utilize technologies in metals, ceramics, polymers, composites, and electronic materials.

The Department of Materials Science and Engineering was formed in 1975 from the merger of the Department of Ceramics Engineering and the Department of Metallurgical Engineering.

Dates of Existence

Related Units

Journal Issue
Is Version Of

23Na NMR spin lattice relaxation times, T1, and central linewidths were obtained for yNa2S + (1 − y)[xSiS2 + (1 − x)PS5/2] glassy solid electrolytes for two series of glasses, y = 0.5 and 0.67, and x = 0.1, 0.3, 0.5, 0.7, and 0.9. No pronounced mixed glass former effect in the activation energy was observed within experimental uncertainty for either series of glasses. Energy barriers to sodium motion were calculated using the Anderson-Stuart model for the y = 0.67 sample, and the results suggested that the energy barriers as a function of composition are strongly influenced by the dielectric constant of these glasses. DC Na+ ion conductivity values calculated using NMR-derived correlation times, an available Na+ ion site coordination number in the range z = 3–4, and an energy cutoff determined from the critical percolation threshold, were in agreement with the increasing trend in the experimental values for the y = 0.67 glasses. Using the same model, the conductivity values were calculated for the y = 0.50 glasses, which have as yet to be measured, and these revealed a decreasing conductivity as x increased. Sodium NMR second moment studies showed that the cation spatial arrangement followed a homogeneous distribution for y = 0.50 and 0.67 samples over most of the composition range, but deviated significantly away from this above a sodium concentration of 1.85 × 1028 m-3, suggesting a tendency for sodium to cluster under these conditions.